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Abstract: Two kinds of semantical tools for interpreting propositional
modal formulas are introduced, and their close relation to each other
is explained in this note. Although it contains no novel findings about
modal logics, all the facts and their proofs in this note are extremely
significant to students and researchers in this field of studies for future

use.

1 Introduction

There are two prominent ways to investigate mathematical logics:
the syntactical one and the semantical one. The former is suitable for
showing some properties of each particular logic, by defining an equiv-
alent syntactical system to it, and by utilizing the mathematical in-
duction on the definition of syntactical objects tactically. On the other
hand, the latter has an advantage in establishing some general results,
like of the form: “all logics that are determined by some semantical ob-
jects with such and such conditions have these good properties.” ([3],
(5], [7],8], [9])

Semantical systems are used for attaching a meaning to each formula
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in a given logic, determining a set of ¢rue formulas in some setting of
the system, and also determining a set of walid formulas, which may
hopefully be equal to the set of theorems of the given logic.

For interpreting propositional modal formulas, there are two main
different semantical systems: modal algebras and general frames. Both
systems can interpret propositional modal formulas in their own way,
and can give completeness theorems to some classes of modal logics.
The class of logics which can be determined by modal algebras and the
class which can be determined by general frames are a little different,
but these two types of systems are useful in investigating propositional
modal logics and it can be said that both serve us the same mathe-
matical objects to interpret modal formulas in a certain extent.

There exists a close relation between modal algebras and general
frames. For example, for a given modal algebra, there exists a general
frame which corresponds to the original algebra, in a sense that both
semantics make the same set of formulas valid. On the other hand,
for a given general frame, there is a modal algebra which corresponds
to that frame. These facts are a part of the well-known representation
theory of modal algebras.

In this note, some useful theorems in the representation theory of
modal algebras are explained systematically. After introduction of
modal logics in the second section, modal algebras, and general frames,
the ways how to construct frames from algebras, and conversely, how
to construct frames from algebras are discussed in section 3. More-
over, it is presented in this section that homomorphisms between two
algebras correspond to p-morphisms between two frames.

Craig’s Interpolation Property and Halldén Completeness are two ma-

jor examples of syntactical properties of mathematical logics. To each
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property, an equivalent algebraic condition and an equivalent frame-
theoretic condition are already known. In section 4, the equivalence
of conditions of algebras and frames for both properties are presented
on the basis of representation theory.

Several syntactical methods are established for proving a given logic
to possess the Craig’s Interpolation Property. One of them is known
as Inseparable Tableauz Method using semantic tableaux. In section 5,
this method is rewritten in an algebraically equivalent style in order
to apply it to a broader class of modal logics.

In the last section, outlook for this research area in the future are

discussed with some open questions.

2 Preliminaries

First of all, several syntactical notions are introduced to define propo-
sitional normal modal logics. The propositional modal language £
consists of the following set of symbols: (1) a countable set of proposi-
tional variables {pg,p1,---}, (2) a set of connectives { L, A, -, O}, and
(3) a pair of parentheses {(,)}. The set ®(:= ®(L)) of modal formulas
in the language £ is defined in a usual way. The following connectives
and formulas using them are introduced as abbreviations: T := -1,
eV = =(mp A1), o = b 1= -V, @ & = (9 > P)A (Y = ),
and Oy = —(0(—y)). A normal modal logic in the language £ is de-
fined as a subset L of ® that contains: (1) all classical tautologies of @,
and (2) a formula of the form O(¢ — 1) — (0@ — Ov), and is closed
under (3) the Uniform Substitution (¢ € L implies @[tp/p;] € L), (4)
the Modus Ponens (¢, — 1 € L implies ¢ € L), and (5) the Neces-
sitation (@ € L implies Op € L).
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The smallest normal modal logic of ® is denoted by K. A formula
¢ is called a theorem of a logic L if ¢ € L. For two normal logics L
and L', L' is a normal extension of L if L C L'. For a normal logic L
and a set 3 of formulas, the smallest normal extension of L containing
also X is denoted by L & . The class of all normal extensions of L is
denoted by NExT(L).

One of the main figures of this note, that is, modal algebra, is defined
in the following,.

Definition 2.1 (Modal algebras) A modal algebra is a structure
2= (A,N,U,—,1,0,1), where (4,N,U, —,0,1) is a boolean algebra,
and [ is a unary operator satisfying: for any a,b € A, (1) I(1) = 1
and (2) I(aNb) = I(a) NI(b). 1

To interpret each formula on a modal algebra 21, an assignment func-
tion, or valuation v : ® — A is used. For each variable p;, v assigns
an element in A to the variable, that is, v(p;) € A. For formulas
in general, the assignment by v is defined in the following induc-
tive way: v(L) = 0, v(-p) = —v(p), v(p A¥) = v(p) Nv(y), and
v(Op) = I(v(yp)). A formula ¢ is true in a model (%, v), if v(p) =1 in
2. A formula ¢ is valid in A (A | @), if for any valuation v : & — A,
@ is true in (2, v). For a class C of modal algebras, a formula ¢ is valid
in C (C k= ), if for any algebra 2 € C, ¢ is valid in 2.

Let Ck be the class of all modal algebras. For the normal modal
logic K, the following completeness theorem holds: for any formula ¢,
@ is a theorem of K if and only if ¢ is valid in Cx. This theorem
is also expressed as: the logic K is complete with respect to the class
of all modal algebras. Similarly, for any normal modal logic L, there

exists a suitable class Cr, of modal algebras such that L is complete
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with respect to Cr.

For any class C of modal algebras, the set of formulas L(C) := {¢ €
®|2A = ¢ forany A € C} determines a normal logic. On the
other hand, for any normal modal logic L, the class of modal alge-
bras V(L) := {2l € K |2 |= ¢ for each ¢ € L} turns out to be a special
class of algebras called a variety. A wariety is a class of algebras which
is defined by a set of identities. A famous theorem for characterizing
varieties by G. Birkhoff ([1]) is that a class C of algebras is a variety
if and only if C is closed under (1) taking homomorphic images, (2)
taking subalgebras, and (3) taking direct products. For those reasons,
every variety corresponds to a normal modal logic.

The other figure of this note is frame, which is defined in the follow-
ing.

Definition 2.2 (General frames) A (general) frame is a structure
F := (W, R, P), where W is a non-empty set of worlds, R is a binary
relation on W, and P is a subset of P(W) that contains § and W, and
is closed under the set-theoretic intersection, the set-theoretic com-
plement, and the operation Ir defined as: Igr(X) = {x € W |Vz €
W {(xzRy implies y € X)} for all X € P(W). 1

On a frame, a little different type of assignment function is used
for interpreting formulas. A waluation V on a frame F := (W, R, P)
is a function from a set of propositional variables to some members
in P, that is, V(p;) € P for a variable p;. When a valuation V is
fixed, a meaning of a formula in a model M := (F, V) is assigned in
the following. A formula ¢ is true at a point £ € W in a model M
(I =2 ¢ in symbol) is defined inductively as:

(0) 9 &, L always holds.
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(1) M=, p; if and only if z € V(p;).

(2) M=, ¢ if and only if M (&, .

(3) M=, An if and only if M =, ¢ and M |4 7.

(4) 9M =, O% if and only if Vy € W, (zRy implies I =, ¢).

A formula ¢ is valid in a frame F (F = ), if (F,V) =z ¢ for any
valuation V on F and for any point z € W. For a class D of frames,
a formula ¢ is valid in D (D | @), if F |= ¢ for any F € D.

As is discussed in the next section, modal algebras and general frames
are categorically dual to each other, and so, the similar completeness
theorem also holds for general frames: for every normal modal logic L,
there exists a suitable class D of general frames such that L is complete
with respect to D.

A Kripke frame is a special sort of general frame F := (W, R, P),
where P = P(W), and it is denoted only by F := (W, R). A logic L
is Kripke complete if it is complete with respect to a class of Kripke
frames. It is not the case that every normal modal logic is complete
with respect to some class of Kripke frames. In fact, quite a few
normal modal logics are shown to be Kripke incomplete ([21], [6], [2],
[22], [18]). Other terminologies for propositional modal logics follow
the usage in Chagrov and Zakharyashev’s book [4].
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3 Duality between modal algebras and general

frames

3.1 Jénsson-Tarski duality between modal algebras and

general frames

A deep connection exists between the class of all modal algebras and
a subclass of the class of all general frames, that is now called Jénsson-
Tarski Duality ([13], [14]). This means that, for a given modal algebra
2, a general frame can be constructed from this 2(, and that validates
exactly the same set of formulas as 2 does. Conversely, a modal alge-
bra can be also constructed from a given frame F which validates the
same set of formulas as the frame F does. This good correspondence
between modal algebras and general frames is explained in this section,
together with a correspondence between morphisms of two classes of
such objects.

Now, morphisms for algebras and frames are defined here.
Definition 3.1 (Homomorphisms of modal algebras) Let 2,8
be modal algebras.

(1) f: A — B is a homomorphism from 2 to B if,

(a) f(1a) =13,

(b) flanabd)= f(a)Np f(b),
(¢) f(-aa)=—5f(a),

(d) f(a(a)) = Ip(f(a)).

(2) f: A — B is an embedding, if it is a homomorphism, and also one

t0 one.

_39_



A Note on Semantic Tools for Modal Logics (MIYAZAKI)

Definition 3.2 (Frame-morphisms of general frames) Let F =
(W,R, P)and, G = (U, S, Q) be general frames.
(1) g: W — U is a frame-morphism from F to G if,
(a) Vz,y € W (cRy implies g(4)Sg()),
(b) Vz € W,Va € U(g(z)Sa implies 3z € W(g(z) = a and 4R,),
(c) VX €Q,9g71(X)eP.

(2) g : W — U is a p-morphism, if it is a frame-morphism, and also

onto.

]

Let 2 = (A,N,U,—,0,1) be a boolean algebra. A subset F' of A is
called a filter, if F satisfies: (1) 1 € F, and for z,y € A, (2) z,y € F
implies zNy € F and (3) z € F and = < y implies y € F. A filter F' is
proper, if 0 ¢ F. A proper filter F is prime, if Uy € F implies x € F
ory € F for z,y € A. A prime filter F in 2 is a maximal proper filter
in 2. As its dual, a subset J of A is called an ideal, if J satisfies: (1)
0€J,and for z,y € A, (2) z,y € J impliesszUy € J, and (3) x € J
and y < x implies ¥y € J. An ideal J is proper, if 1 ¢ J. A proper ideal
J is prime, if zNy € J implies z € J or y € J for z,y € A. A prime
ideal J in 2 is a maximal proper ideal in 2I.

One of the most important lemmas about prime filters is the follow-
ing:
Lemma 3.3 Let 2 := (4,N,U,—,0,1) be a boolean algebra, F' C A
a proper filter in 2, and a € A such that a ¢ F. Then there exists a
prime filter G satisfying F' C G and a € G.

Proof : It is easily proved by a standard use of Zorn’s lemma. O

The transformation from an algebra into a frame, and their connec-

tion are shown in the following.
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Proposition 3.4 Let 24 = (4,N,U,—,1,0,1) be a modal algebra.
Define 2, := (Fp(A), Ry, Py) as follows: Fp(A) is the set of all prime
filters in 24, Ry is a binary relation on F,(A) defined as: pRyg if and
only if Va € A, ( I(a) € F implies a € G), and Py := {0(a) | a € 4},
where 6(a) := {F € F,(A) |a € F}. Then 2, is a general frame with
the following property: Vo € @(2(* = ¢ if and only if A = <,0).
Proof : In order to be checked that Py is closed under some needed
operations, it will be seen that 6(z) is an embedding from 2l into
(Pa, N, U, —, IR, 0, Fp(A)). Suppose a £ bin 2. Then there is a prime
filter F' € Fj,(A) such that a € F' and b ¢ F. This means that 6(a)
6(b). Thus 6 is one to one. Easy calculation shows that 8(—a) = —6(a)
and 6(anb) = #(a)NE(b). On the modal operator, suppose F' € 8(1(a)).
Then I(a) € F. Take any prime filter G such that pRyg and then, of
course, @ € G, which means that G € 6(a). Therefore F' € Ir(6(a)).
Hence 6(I(a)) C Ir(f(a)). Conversely suppose F' ¢ §(I(a)) which
means that I{a) ¢ F. Put G := {b € A|I(b) € F}. Then, a ¢ G,
and it is easy to see that G is a proper filter. Therefore by Lemma
3.3, there exists a prime filter G’ such that G C G’ and a € G'.
This G’ satisfies pRy and a ¢ G’, which implies that F ¢ Ig(6(a)).
Thus Ir(f(a)) C 6(I(a)) is proved. Hence Py is closed under those
operations, and so, 2, is a general frame.

For a valuation v on & and a valuation V on 2, suppose V(p;) =
O(v(p;)). Here, denote the set {F € F,(A) | (U, V) = ¢} by V() for
any formula ¢ built from p;’s, then it is immediately seen by induction
that V(p) = 0(v(p)). Therefore V(p) = F,(A) in 2, if and only if
v(p) = 1in A. Thus A, = ¢if and only if2 = ¢ holds for any formula

Q. O
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The converse transformation from a frame into an algebra also exists.
Proposition 3.5 Let F = (W, R, P) be a general frame. Define
F* = (P,N,U,—,Ig,0,W). Then F* is a modal algebra with the
following property: YV € @(.7-" * = ¢ if and only if F = cp).

Proof : It is easy to be checked that Ig(W) =W and Ig(X NY) =
Ip(X)NIg(Y) for all X,Y € P, and so F* is a modal algebra. For
a valuation V on F and a valuation v on F*, suppose that V(p;) =
v(p;) € P. Denote V() := {& € W | (F,V) =, ¢} for any formula
¢ which is constructed from p;’s, then it is immediate to be seen by
induction that V(@) = v(p). Therefore, it is the case that V(p) =W
if and only if v(¢p) = W. Hence F* = ¢ if and only if F = ¢ holds

for any formula . O

Note that about the composition of two kinds of transformation (-)*
and (-)« introduced above, (2(,)* is isomorphic to 2 itself for any modal
algebra 2, whereas, for general frames, (F*), is not always isomorphic
to F. A general frame F is called descriptive, if (F*), is isomorphic
to F. ((F*)« = F in symbol) For this reason, it is the class of descrip-
tive general frames that exactly corresponds to the class of all modal
algebras from a categorical viewpoint. Characterization of descriptive
frames is presented later in this section.

There is also a good correspondence between morphisms of algebras
and frames.

Lemma 3.6 Let 2,25 be modal algebras.
(1) Suppose f : A; — As is a homomorphism from 2l; to 2. Then,
amap g : Ags — Ay, defined as: g(F) :={a € A1 | f(a) € F} is a

frame-morphism.

(2) In (1), if f is also one to one (i.e. an embedding), then g is onto
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(i.e. a p-morphism).
Proof : (1): The first thing to check is that g(F') is a prime filter

in 2l; for any prime filter F' in Ay. 0 & g(F') because f(0) =0 & F.
Suppose a € g(F) and a < b. Then f(a) € F' and f(a) < f(b) € F,
and so, b € g(F). Suppose a,b € g(F). Then f(a), f(b) € F, that
implies that f(a) N f(b) = f(anbd) € F, and so, anNb € g(F). Suppose
aUbe g(F) and a € g(F). Then, f(aUb) = f(a) U f(b) € F. Since
F is a prime filter, either f(a) € F or f(b) € F. Here, if the former
holds, then a € g(F) contradicts to the assumption. Thus, the latter
holds, and so, b € g(F'). Hence g(F') is indeed a prime filter in 2.

Denote A1, := (W1, Ry, P1) and g, := (Wy, R, P»). For F,G € Wa,
suppose rRog. Take any I(a) € g(F). Because f(I(a)) =I(f(a)) € F,
and pRog, f(a) € G, and so, a € g(G), which means that ;m)Ri4c)-

For F € Wz and G € W1, suppose ¢y Rig. PutY := {a € As|I(a) €
F}, Z .= {a € Az|f(b) < afor someb € G}, and H' := {a € Az|cNd <
a for some c €Y and d € Z}.

Claim: This H' is a proper filter.

It is easily seen that 1 € H’. Suppose that 0 € H’. Then, by its
definition ¢Nd < 0 holds in 2, for some ¢ € Y and some d € Z.
Since 2 is a boolean algebra, d < —c follows. Then, by the fact
that d € Z, f(b) < d < —c also holds for some b € G. Therefore,
¢ = —(~¢) < —f(b) = f(~b), and so, I(c) < I(f(~b)) = F(I(b))
follows. Here, since ¢ € Y, I(c) € F, which implies that f(I(—b)) € F.
Then I(—b) € g(F) by the definition of the map g. Now (R forces
that —b € G, that leads to a contradiction. Hence it is proved that
0¢ H.

Suppose a € H' and a < bin Ay. ThencNd <a <bforsomececY
and some d € Z. Therefore b € H'. Suppose a,b € H' in Ay. Then,
cNd < g for some ¢ € Y and some d € Z, and ¢/Nd’ < bforsomec € Y
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and some d’ € Z. Therefore (cNd)N(c'Nd') = (cnd)N(dNd) < anb
holds for cNcd € Y and dNd' € Z. Thus anNb € H' holds in YAy. The
claim has just been proved.

Therefore, by Lemma 3.3, there exists a prime filter H such that
H' C H. Now, suppose I(a) € F for an arbitrary a € Ay. Then, of
course aNl < afora €Y and 1 € Z, which implies that a € H' C H.
Hence pRop follows. Here, it is the case that g(H) = G, because for
any a € G, f(a) < f(a) holds, of course, but it means that f(a) € Z.
By the fact that 1N f(a) < f(a), f(a) € H' C H follows, which implies
that G C g(H). Since G is a prime filter, it must be a maximal proper
filter, and so, g(H) = G is proved.

Finally it is checked the correspondence between Py, and Py,. For
any X € Py, = {0i(a) |a € A1}, X = 61(a) for some a € Aj, and
F € g7(61(a)) if and only if g(F) € 61(a) if and only if a € g(F) if
and only if f(a) € F if and only if F € 62(f(a)). This means that
97H(X) = g7 H(61(a)) = 62(f(a)) € Pu, = {62(b) | b € A}

(2): Suppose that f is one to one. Consider any F' € F,(A;). Put
G :={a€ Az| f(b) < a for some b€ F}.

Claim: This G’ is a proper filter.

Suppose 0 € G'. Then by the definition of G/, there is b € F such
that f(b) < 0, that implies f(b) = 0 = f(0). Since f is one to one,
b=0 € F, but this is a contradiction.

Suppose a € G’ and a < b in Ay,. Then, f(c) < a < b for some
c € F. Hence b € G'. Furthermore suppose a,b € G'. Then, f(c) < a
holds for some ¢ € F', and f(d) < b holds for some d € F. Now,
flend) < f(e)N f(d) < anb follows, and so, aNb € G’ since cNd € F.
Thus G’ is indeed a proper filter.

Therefore by Lemma 3.3, there exists a prime filter G in 2y such that
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G’ C G. This G satisfies that g(G) = F', because, for a € F', a trivial
fact f(a) < f(a) means that f(a) € G’ C G, and so, a € g(G). On
the other hand, for b € F, it is the case that —b € F', which implies by
the same reasoning above that —b € g(G), that is b & g(G). Hence it
is proved that ¢ is onto. |

Moreover, a homomorphism between duals of frames can be con-
structed out of a frame-morphism between original frames.
Lemma 3.7 Let 1 = (W1, Ry, P1) and F2 = (Wa, Ry, P») be general
frames.
(1) Suppose f : Fi — J2 is a frame-morphism. Then, a map g :
Fo* — F1* defined as: g(X) :={z e W1 | f(z) € X} for X € P,

is a homomorphism from 5* to F1*.

(2) 1In (1), if f is also onto (i.e. p-morphism), then g is one to one (i.e.
an embedding).
Proof : (1): Since f is a frame-morphism, for any X € P, f71(X) =
g(X) € P, holds. Thus g is well-defined. Then the conservation of each
operator of the modal algebras has only to be checked. It is trivial that
g(Ws) = W1. Tt is also easy to be seen that g(X NY) = g(X) Nng(Y),
g(—=X) = —g(X). On the modal operator, suppose z € g(Ig,(X)),
which is equivalent to f(z) € Ig,(X). Take any y € Wj such that
zR1y. Then f(z)Rf(y) holds, and so, f(y) € X. Hence y € g(X),
which implies that = € Ig,(g(X)). Conversely, suppose z € Ig, (9(X))
and take any z € W5 such that f(z)Rgz. Then there is some v € W,
such that zRju and f(u) = z. Since z € Ig,(9(X)), u € g(X),
and so, f(u) = z € X. Therefore f(z) € Ig,(X), that implies z €
g(Ir,(X)). Thus g(Igr,(X)) = Ig,(g(X)) follows. It is proved that g

is a homomorphism.
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(2): Suppose g(X) = g(Y) for X,Y € P,. Here, consider any z € X.
Since f is onto, there exists some y € Wj such that f(y) = z € X.
Thus y € g(X) = g(Y) holds, and so, f(y) =z € Y. Hence X C Y

follows. u

So far, it is proved that the class of modal algebras correspond to the
class of general frames, and vice a versa, by dual transformations (-)*
and (-).. However, this correspondence is, to say exactly, the class of
all modal algebras to the class of all descriptive general frames, which

will be seen in the next subsection.

3.2 Characterization of descriptive frames

A descriptive general frame is a frame whose bidual transformation
is isomorphic to itself. The class of all descriptive frames is character-
ized by a subclass of frames which possess the following three frame
properties. In the beginning, the three properties of general frames
are defined below.

Definition 3.8 Let F = (W, R, P) be a general frame.

(1) F is differentiated, if for all z,y € W, z = y if and only if VX ¢
P(w € X is equivalent to y € X),

(2) F is tight, if for all z,y € W, xRy if and only if VX € P(z €
Ir(X) implies y € X),

(3) F is compact, if for any x C P, that x has the finite intersection
property implies (] x # 0. Here, that x has the finite intersection
property means that, for any finite subset x' C x, (N x’ # 0.
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At first, a simple observation is shown to be true.
Proposition 3.9 Let F be a general frame. F is descriptive if
and only if F = 2, for some modal algebra 2.
Proof : Suppose F is descriptive. Then F = (F*), holds. Therefore
take F* for the algebra 2. Conversely suppose F = 2,. Then F* =
()" =AU, and so, (F*). = A, = F. i

Then, the characterization is proved in the following.

Theorem 3.10 For a general frame F = (W, R, P}, F is descriptive
if and only if F is differentiated, tight, and compact.

Proof : Suppose F is descriptive. By the observation above, there is
a modal algebra 2 such that F = 2,. Therefore, it is enough to be
seen that the frame 2, = (Fp(A), Ry, Py) has these three properties.

For F,G € F,(A), it is obvious that FF = G implies that VX €
Py (F € X ifandonly if G € X ) Conversely, suppose F' Z G. Then,
there is a point a € F such that a ¢ G. Therefore, for 6(a) € Py,
F € 6(a) but G € 6(a). Hence 2. is differentiated.

On the definition of Ry, for any F,G € F,(A), rRyc if and only if
Ya € A, (I(a) € F implies a € G), if and only if V6(a) € Py(F €
9(I(a)) implies G € 6(a)). Therefore, in order to be seen that 2, is
tight, it is enough to be proved that 6(I(a)) = Igr,(6(a)). Suppose
F € 6(I(a)), which is equivalent to I(a) € F. Consider any G € F,(A)
such that pRgq. Then, by the definition of Ry, a € G follows, which
means that G € #{(a). Hence F' € Ig, (6(a)) holds. Conversely suppose
F ¢ 0(I(a)), that is, I(a) ¢ F. Put Go:={z € W |I(z) € F}. Tt is
easily checked that Gg is a proper filter and a ¢ Gg. Therefore by the
Lemma, 3.3, there exists a prime filter G such that Go C G and a € G.
This G really satisfies that G € F,(A), rRac , but G & 6(a). Thus
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it is the case that F' ¢ Ig,(6(a)). Hence 8(I(a)) = Ip,(6(a)) follows
from these facts.

To be shown that 2. is compact, take any x C Py with the finite
intersection property. It can be denoted as x = {6(a)|a € X} for some
subset X C A. Let Zy := {b € A| N X' < b for some finite subset X’ C
X}. Now, since x has the finite intersection property, it can be proved
that Zp is a proper filter in %, and so, by Lemma 3.3, there exists
a prime filter Z € Fp(A) such that Zy C Z. This prime filter Z
satisfies that for any a € X, a € Zy C Z, which implies that Z € 6(a).

Therefore, Z & ﬂ f(a) = m x # 0. Thus the frame 2l is compact.

acX
On the other hand, suppose F is differentiated, tight, and compact.

The bidual of F has the following form: (F*), = (Fp(P), Rr+, Pr+),
where for any F,G € F,(P) pRr-g if and only if VX € P, (Iz(X) €
Fimplies X € G), and Pr» = {§(X)|X € P}. In the above expression
of Prs, 8(X) :={F € F(A) | X € F} for X € P.

A map 7: W — F,(P) is defined as 7(z) :={X € P|z € X}. It
will be shown that this 7 is an isomorphism from F to (F*)..

The first thing to be checked is that 7(z) is a prime filter in P for
all z € W. Obviously 0§ € 7(z). For X,Y € P, suppose X € 7(x)
and X CY. Then, x € X C Y, that implies Y € 7(z). Moreover,
suppose X,Y € 7(x), then, z € X and z € Y holds, and so, z €
X NY. Therefore X NY € 7(x). Thus 7(z) is a proper filter. Suppose
XUY €7(z) and X & 7(z). Then z € XUY but = ¢ X follow, which
means that z € Y, and so, Y € 7(z). Hence 7(z) is a prime filter in
P.

Claim: 7 is a one to one, onto , and frame-morphism.

Since F is differentiated, for any z,y € W, 7(x) = 7(y) if and only if

{XePlzeX}={X € P|ye€ X} if and only if z = y, which shows
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that 7 is one to one.
Take any £ € F,(P). Since F' is proper, F' has the intersection
property. Because F is compact, (| F # ). Therefore there is a point

zg € W such that g eﬂF: m X. Now, forany X € P,if X € F,

XeF
then 9 € X, which means that X € 7(zg). Otherwise, —X € F

because F' is a prime filter. Therefore, o € —X, that is, 2o € X, and
so X ¢ 7(zp). Thus F' = 7(zg), which implies that 7 is onto.

For x,y € W, suppose zRy. Then since F is tight, this is equivalent
to that for any X € P, x € Ig(X) implies y € X, but in the term of
T, this can be rewritten to that for any X € P, Ir(X) € 7(x) implies
X € 7(y), which is the definition of ,(;) RF+(y). On the other hand,
suppose for any x € W, and any G € F,(P), r(@)BF+G- As a similar

argument as just above, there is a point z € W such that z € ﬂ X
XeG
and G = 7(z). Then by the fact that ,(;)RF+,(,), this 2 satisfies that

for any X € P, Igr(X) € 7(x) implies X € 7(z), which means that
z € Ip(X) implies z € X. Since F is tight, the last says that zRz.
Consider any Z € Pr«. Since Pr» = {0(X) | X € P}, there is
some X € P such that Z = #(X). Now it has to be proved that
T YZ)={zeW|r(zx) € Z} = X. Foranyz € W, z € 7~ 1(2) if
and only if 7(z) € Z if and only if 7(z) € (X) if and only if X € 7(z)
if and only if z € X. Thus 771(Z) = X € P. Hence 7 is one to one
p-morphism, in order words, an isomorphism. Eventually (F*), = F

is shown to be the case. O
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4 Algebraic and frame-theoretic conditions for
Craig’s Interpolation Property and Halldén

Completeness

Craig’s interpolation property and Halldén completeness are two ma-
jor syntactical properties of mathematical logics, both of which have
been extensively studied by many researchers for a long time ([10],
[11], [16], [17], [15], [12], [20]). There already exist a great amount
of good results on these topics for modal logics. Here algebraic and
frame-theoretic conditions for modal logics to have these properties
are discussed; in particular, connection among such conditions are de-
scribed.

A small notation is introduced before start. For a formula ¢ € @,
let Var{yp) be the set of all propositional variables that occur in the
formula ¢.

A logic L is Halldén complete (H-comp for short), if for any formulas
@ and 1 such that Var(p)NVar(y) = 0, Ve € L implies either ¢ € L
or ¢ € L. A logic L has the Craig’s Interpolation Property (CIP for
short), if for any formulas ¢ and ¢, ¢ — ¥ € L implies that there exists
a formula v ( this is called an interpolant) such that both ¢ — v € L
and v — 1 € L hold, where 7 satisfies that Var(y) C Var(o)NVar(y).

4.1 Algebraic conditions for H-comp and CIP and their

equivalence

First, algebraic conditions for H-comp and CIT are introduced and
their equivalences for these properties are proved.
Definition 4.1 (Algebraic Condition for Halldén-complete
-ness) Let V be a variety of modal algebras. V has the algebraic
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condition for Halldén-completeness (ACH for short), if for any algebras
A1, 2o, there exist an algebra U € V and homomorphisms f : %; — 2,
and fo : Ao — A, such that for any z € Aj,y € Ay, if z # 1 in 2, and
y # 1in 2y, then f1(z) U fa(y) # 1 in 2. i

Theorem 4.2 Let V be a non-trivial variety of modal algebras and

L = L(V). Then the following statements are equivalent.
(1) V has the (ACH).
(2) L is H-comp.

Proof : (1) = (2): Suppose a formula ¢ is constructed from p;’s and
1 from g;’s. Suppose also ¢ ¢ L and ¢ ¢ L, and Var(p)NVar(y) = 0.
Then there are 2; € V and a valuation v; on 2; such that v1(p) # 1
in 21;. Similarly, there are s € V and a valuation vy on % such that
vo(1h) # 1 in Y. For these two algebras, by (ACH) for V, there are
an algebra 2 € V and homomorphisms f; : 2; — 2 and fa : 2y —
% Now since 01(p) # 1 and v(®) £ 1, fi(o1(9)) U fo(va()) # 1
holds. A valuation v on 2 is defined as: v(p;) := f1(vi(p:)) for p;’s
and v(g;) := fa(va(gy)) for g;’s. Then, v(w V ¢¥) = v(p) Uv(y) =
F1(v1{p)) U fa(va(e))) # 1 holds in 2A. Hence ¢ V¢ & L.

(2) = (1): Suppose two modal algebras 2; and 2 are given. For
each element a € Ay, a variable p, is associated and a language £ is
determined by {p, | @ € A1}. Similarly, for each b € A, a variable g,
is associated and a language Ly is determined by {gy | b € Az}. Let
L := L1 UL be the language for the logic L. Consider a valuation V; :
®(L1) — Ay as: Vi(p,) := a, and define Xy = {p € ®(L1) | Vi(p) =
1in2;}. Similarly, consider a valuation Va : ®(Ls) — s as: Va(g) :=
b, and define 3y := {¢p € ®(Ly) | Va(¥) =1 in A}
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For ¢+ = 1,2, ¥; is closed under modus ponens, because for o, 8 €
®(L;), suppose o, — B € ¥;. Then Vj(a) = 1, and V;(a — B) =
—Vi(e) UVi(B) = Vi(B) = 1, and so, B € ;. Next, L ¢ %; for
i =1,2 because V;(L) = 0 # 1. This means that both ¥; and X, are
consistent. Furthermore, LN®(L;) C %; for ¢ = 1,2, because, suppose
a € LN®(L;). Since o € ®(L;), o can be interpretted by V;, and since
a € L, Vi(a) =1, in particular. Hence a € %;.

Put ¥ :=L &%, ® 3. Fori=1,2, for p € ®(L;), p & ¥; implies
@ ¢ %, because, suppose ¢ € ¥; and ¢ € ©.. Then, by the deduction

theorem, there are o1,---,0,, € %, and 71,--- ,7, € X, such that
(D(kl)o'l A A D(km)o'm) A (D(fl)T1 A A D(fn)Tn) — ¢ € L for
some numbers ki, kg, ..., kn and £1,%s,...,4,, where O®)p = © A

Qo AD%p A--- ADOFp, Put p:= O0Fgy A .. AOFmg, . and v =
Ol A A D(é")Tn for short. Then uAv — ¢ € L holds, from which
(# — @) V- € L can be derived by the classical calculus. Now, since
L is H-comp, either 4 — ¢ € L or =~ € L. In the former case, because
p € Y;and p — p € LN®(L;) C %, and then since ¥; is closed under
modus ponens, ¢ € ¥; must holds, but this is a contradiction. For
the latter case, v € ;, but -v € LN ®(L;) € X; which lead to a
contradiction because ¥; is consistent.

Then, since L & 31,39, also L ¢ X, that means that ¥ is also
consistent.

Claim: ¥ is also H-comp.

Suppose ¢ V1 € ¥ for ¢ € ®(L;) and ¢ € ®(L;). Then, similarly
by the deduction theorem, there are oy, -+ ;0 € X, and 7, -+ ,7p €
Y, such that (D(kl)al JANCRIEIAN D(km)am) A (D(El)ﬁ A A D(Z“)Tn) —
VY € L for some numbers ki, ko,...,ky and £1,6s,...,4,. Put
b= Oklg A AOER) g and v = a@r A A D(E")Tn for short.
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Then u Av — ¢ V4 € L holds, from which (¢ — o)V (v = ¢) € L
can be derived by the classical calculus. Since L is H-comp, either
4 — @ €Lorv— €L holds. In the former case, because p € ¥;
and p = @ € LN®(L;) C 3, p € X; € X can be deduced. Similarly
in the latter case, ¢ € ¥; C X is deducible. Hence it is shown that ¥
is H-comp.

Define a modal algebra 2 := (A,N,U,—,1,0,1) as follows: A :=
{lla]] | @« € ®(L)}, where ||a|| == {8 € &(L) | + B € E}. For
operators, 1 := || T||, —Ila| := [[all, [lall N [I8]] := [l A I, and
I(||a|]) :=||0c||. These operations are easily shown to be well defined,
and 2 € V, because, L C %, % = L.

Furthermore, maps fi1 : U — A and fo : Ay — A are defined as:
fi(a) == ||pa]| for a € A1, fa(b) := ||gs|| for b € Ay. Then a simple
calculation shows that these are indeed homomorphisms.

Now take any z(# 1) € 2; and any y(# 1) € Ay. Denote ||p|| :=
f1(2) = IIpell and [[]] := fa(y) = llgy I Because @ # 1 in 2y, ¢ 5,
and so, ¢ ¢ ¥. Similarly ¢ ¢ X is deduced. Here, if ||¢ V || = 1,
then ¢ V¢ € ¥ must be the case. However, since % is H-comp,
either p € ¥ or ¢y € ¥ must hold. This is a contradiction. Therefore

fil@) U faly) = |[e V|| # 1. 0

Definition 4.3 (Amalgamation Property and Super Amalga-
mation Property) Let V be a variety of modal algebras.

(1) V has the Amalgamation Property (AP for short), if for every al-
gebras 2g,2;,%s € V such that there are embeddings f; : %y —
A1, fo: Ay — Ay, then there exist an algebra A € V, and embed-
dings g1 : 21 — A, go : Uz — A such that (g1 0 f1)(x) = (g20 f2)(z)
for any xz € Ap.
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(2) V has the Super Amalgamation Property (SAP for short), V has
the amalgamation property, and also satisfies: for any z € A; and
any y € A; ({1,7} ={1,2}), gi(z) < g;(y) in A implies that there
exists z € Ag such that z <; fi(z) in ; and f;(2z) <; y in ;.

|
Theorem 4.4 Let V be a non-trivial variety of modal algebras and

L = L(V). Then the following statements are equivalent.
(1) V has the (SAP).

(2) L has the CIP.

Proof : (1) = (2): Consider formulas ¢ = ¢(p1, - ,pe, 71, " ,Tn)
constructed only from {p1,--- ,pg, 71, - ,rn} and ¥ = ¥(q1, - , qm,
T1, -+ ,rn) constructed only from {q1, - ,gm,r1, - ,Tn}. Suppose
there exists no x = x(r,---,rn) such that both ¢ — x € L and
X — % € L hold. Then it is enough to be seen that ¢ — ¢ & L.
Let 2Ap, 21,2y be free-V algebras generated by the sets {c1,- - ,¢n},
{a1,- -+ ,ag,¢1, -+ ,cn},and {b1, -+ by, c1, -,y } respectively. Then
clearly 2y is embedded into both 2; and 2, by identity maps. So
by the (SAP) of V, there exist an algebra 2 € V and embeddings
g1 : A — A, g9 : Uy — A with some properties.

~

Claim: g,(@(a1, - ,as,c1,+ 1 en)) £ G(d(bry- - ybmyct, e+ ) for
{s,t} = {1,2}, where ¢ (1[3) is a term in the free-V algebra correspond-
ing to ¢ (¢).

Suppose this inequality holds. Then, by (SAP) of V, there exists
d € Ay such that gs(¢(aq,---,
a1y ,6)) < din s and d < ge(P(by, -+ bmyc1, -+, cp)) in Up.
In terms of logic, free-V algebra corresponds to the Lindenbaum L-
algebra, < to the deducibility, and d to a formula x which is con-

structed from {cy,- -, cp}. Therefore,that the inequalities hold means
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o —x € Land x = ¢ € L hold. This is a contradiction.

Now, define a valuation v on 2 as: v(p;) = gs(a;) for i =1,--- ,ayp,

v(gj) = g(b;) for j = 1,---,m, and v(rg) := gs(ck) = ge(ck) for
k=1,---,n, where {s,t} = {1,2}. Since g1, g2 are homomorphisms,
v(p) € v(1) in A, which implies that ¢ — 9 ¢ L.
(2) = (1): Suppose for Ap,%A1,™A2 € V, there are embeddings fi :
Ao — A1 and fo : Ay — As. Here, both f; and fo may be assumed
to be identity maps, that is, fi(z) = fa(z) = z for all x € Ap. For
i=0,1,2, a variable p!, is associated with each element a € 4; in such
a way that for a € Ag, p. = p2 = pY. Denote the language with the
variables p for a € A; by £; (i = 0,1,2) and £ := £; U Ly. Terms
and formulas are not distinguished here, and £ is assumed to be the
language of the logic L.

A valuation V; of £; on 2; is defined as: V;(pl) := a and put
Y, = {p € ®(L;) | Vi(p) = 1} for i = 1,2. Then as in the proof
of Theorem 4.2, it can be shown that L N ®(L£;) C %; and that ¥; is
closed under modus ponens. Let ¥ : =L & ¥; & .

Claim: For ¢ € ®(L:) and ¢ € ®(L;) ({i,5} ={1,2}), p = € B if
and only if Iy € ®(Lo)(p — x € T; and x — ¢ € ;).

If part is trivial, because %;,3%; C X, which is closed under modus
ponens.

For only if part, suppose ¢ — % € 3. Then, by the deduction

theorem, there are o1,-- ,0m € %, and 71,--- ,7, € Xj, such that
(@Egy Ao AOER G ) A (O A ATET) A — ¢ € L for
some numbers ki, ko, . . ., km and 21, 4o, . .., £y. Put g :=0F)g A A

Okm)g,, and v := 0@ A-.. AOE) T, for short. Then (uAvAg) —
1 € L holds, from which (u A ) = (v = 9) € L can be derived

by the classical calculus. Since L has the CIP, there exists a formula
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X € ®(Ly) such that uAyp — x € L and x — (v = ¢) € L. By the
former, p — (¢ — x) € %, from which ¢ — x € X; is deduced since
p € ;. Similarly, by the latter v — (x — 9) € &; is deduced, from
which x — v € ¥; is deduced since v € X;.

Note here that if ¢ = T in particular, x = T holds. In this case, this
claim means that ¢ € X implies ¢ € ¥;. Thus ¥ N ®(L;) = %; for
j=1,2.

Construct an algebra A = (4,N,U, —,1,0,1) as follows: A4 := {{|¢|]|
w € ®(L)}, where |[¢|| == {¢p € ®(L) | ¢ < ¥ € E}. For op-
erators, 1 == [[Tll, —llell == Il llell A 1160 = llg A 9], and
I(]|el]) == ||3¢]|. This A is well defined, and 2 € V because L C &
and 2 | L. Furthermore, define maps g; : %; — 2 by g;(a) := ||p}||
fori=1,2.

Then this g; is one to one, because for a, b € A;, suppose g;(a) = g;(b).
Then ||p;]| = ||p}||, which means that p}, ++ p} € TN &(L;) = %;, and
so, Vi(p, « pi) = 1. Therefore a = Vi(p}) = Vi(p}) = b. More-
over, simple calculation shows that g; is a homomorphism. Eventually
g; turns out to be an embedding. For a € A, g1(fi(a)) = q1(a) =
lIpall = llpall = lIP2I] = g2(a) = g2(f2(a)) holds.

Suppose for a € A; and b € A; ({1,7} = {1,2}), gi(a) < g;(b) in A.
This inequality means ||p|| < ||pi||, which implies that pt — p{, ex.
Then, there exists a formula x € ®(Ly) such that p} — x € ¥; and
x = 7} € Bj. Put ¢ = Vi(x) = V;(x) € Ao Then Vi(ph) < Vi(x) in
2; and Vj(x) < Vi(p]) in 2;. Thus a <; fi(c) and f;(c) <; b. O
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4.2 Frame-theoretic conditions for H-comp and CIP and

their equivalence to algebraic ones

The algebraic conditions for H-comp and CIP can be rewritten in
terms of general frames. Each frame-theoretic condition is proved to
be equivalent to the corresponding algebraic one. First the frame-
theoretic condition for H-comp is introduced and it is shown that this
is equivalent to the (ACH).

Definition 4.5 (Frame-theoretic Condition for H-comp) Let
K be a class of general frames. K has the frame-theoretic condition
for H-comp (FCH for short), if for any frames F7, F» € K and for any
points z € W) and y € Wy, there exist a frame F € K and frame-
morphisms v : F — F1 and v : F — Fa, and a point z € W, such
that v1(2) = z and 1,(z) = v. [

This condition is also expressed as “The class K of frames is closed
under p-morphic fusion” ([12]). But for H-comp, the frame-morphisms
might not be one to one. Hence the maps appearing in the above
definition are not p-morphisms.

In order to be shown that (FCH) is equivalent to (ACH), the notion
of direct product of algebras is needed. For a class C := {;};cs of

modal algebras, the direct product 2 = Hﬁli of all members of C is
i€l
defined as follows: its underlying set is the direct product H A;, where
el

A; is the underlying set of the algebra 2; for each ¢ € I. For every

element a € HAi’ a(i) := a; € A; is called an i-th coordinate of a.
el

Each operation is defined coordinate-wise: for each i € I, 1(7) :==1; €

A;, for a,b € HAi’ (a AN B)(3) == a(i) Ay b(E), (—a)(i) == —;a(i), and
il

_57_



A Note on Semantic Tools for Modal Logics (MIYAZAKI)

(I(a))(@) := Ii(a(i)). For a subclass C := {2;};cr of a variety V, the

direct product 1_‘[2[z is again a member of V.
icl
For a class C of modal algebras, denote Cy, := {¥U, | A € C}, and

similarly for a class K of general frames, denote K* := {F* | F € K}.
Theorem 4.6

(1) For a class K of descriptive general frames, if £* has the (ACH),
then K has the (FCH).

(2) For a class C of modal algebras, if C« has the (FCH), then C has
the (ACH).

Proof : (1): Suppose there are frames F; := (W1, Ry, Py) and Fp :=
(Wa, Ro, P») in K, and points z € W1,y € Wa. Because F1*, 7" € K¥,
and so, by (ACH) of K*, there are a frame F € K (F := (W, R, P)) and
homomorphisms f; : F1* — F*, fo: Fo*¥ — F*. By Lemma 3.6, maps
n'(F):={X € P|f1(X) € F}and v)/(G) := {Y € Ps| fo(Y) € G} for
F,G € F,(P) are frame-morphisms. But since F is descriptive, using
the isomorphism 7 : F — (F*),
3.10, that is, 79 : F1 — (F1.)¥, 72 : Fo — (Fau)™, 1’ and vy’ should be
modified as: v1(u) = 11 ({X € P | fi(X) € 11(w)}), and vo(v) :=
n ({Y € P2 f2(X) € 12(v)}) for u,u € W. Put S := {fi(X) | X €
P,z € X}U{fo(Y)|Y € Py Y}
Claim: S has the finite intersection property.
Consider any finite members of S, that is, X1,..., X, € P; such that
z € X;foralll <¢<nandd,..., Y, € P2 such that y € Y} for all
n m
1<j <m. Then, [ fi(X:)n () fo(¥;) =
=1

=1 =
A n---nXy)N fo(Yin-- -Jm YY) = fi(X) N f2(Y) £ 0, (where X

=XiN---NX,and Y :=Y;N---NYy,) because, since z € X and

appeared in the proof of Theorem
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yeY, —X(# W) € P, and —Y(# W) € P, and so, by (ACH) of
K*, fi(=X) U fo(=Y) # W, which implies that fi(X) N fo(Y) # 0.
Hence S has the finite intersection property.

Now, because F is compact, there exists a point z € W such that
ze[(AX)| X € Pz e X}
ﬂﬂ{fg(Y) |Y € P,y € Y}. By the duality between fx and vy, it
is easily seen that vg(w) € Z if and only if w € fx(Z) for k = 1,2.
Therefore, this point z has the following property: for any X € P (x €
X implies 11(2) € X), and for any Y € Py(y € Y implies v2(2) € Y).
Here, suppose z # v1(z). Then since Fi is differentiated, there is
T € P, such that z € T and v1(z) € T, that leads to a contradiction
to the above property of z. Thus z = v1(z). By the same reasoning
y = vo(z) can be also deduced.
(2): Suppose there are algebras 2;, 2 € C. Let A := {(z,9) |z €
A1,z # 1,y € Ag,y # 1}. Then for each A = (z),y)) € A, since
—zy # 0, there exists a prime filter F) in 2; such that —z) € F).
Similarly, since —y, # 0, there exists a prime filter G in 2 such that
—yx € Gy. Of course, Fy is a point in the frame A4, and G, is a
point in the frame As,.. By the (FCH) of C,, there exist an algebra
A* € C and frame-morphisms A — AN, and v Ay, — A2,
and a prime filter H* in 2* such that 1, (Hy) = Fy and v*(H,) =
Gy hold. Then by Lemma 3.7, maps (f1*) : 2" — (%*)* and
(f22) : Ag* — (AM)* defined below are homomorphisms, that is,
(AN(X) = {E € F,(A) | *(E) € X} for X € Py, (21)(X) =
{E € Fy(A)|12*(E) € X} for X € Py,. By using the isomorphism 6* :
A* — (AN,)* in Proposition 3.4, (f1*)', (f2*)’ should be modified as:
Ara) = 0T ({E € Fp(A) | a € n*(E)}) and fo (b) = ' ({E e

E,(A)|a € vo*(E)}). Consider the direct product 2 := H 2A*, and
AEA
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fi + %1 — A, whose A-th component is (fi)(A) = fi*, f2 : Ay —
2,whose A-th component is (f2)(A\) = fo*. Tt is easily checked that
these are homomorphisms. Here, take any z(# 1) in A; and any
y(# 1) in Ay, and put z := fi(z) U fo(y) € A. Then there is \g € A
such that z), = z and y», = y. Now z), = fl*O(on)uszO (Yxg)- Since
Tag & Fro = 117°(H)o) and ya, & Gao = 2™ (Hy,), Ha, € 07(23,) =
{E € Fy(4) |2y, € 1™ (E)}U{E € F(A) |y, € 2™ (E)}. Therefore
2y # 1in Ay,. Hence z = fi(z) U fa(y) # 1 in 2. a

On the other hand, the frame-theoretic condition for CIP is intro-
duced in the following:
Definition 4.7 (Frame-theoretic Condition for CIP) Let K be

a class of general frames.

(1) K has the Amalgamation Property for Frames (APF for short), if
for any Fo,Fi,F2 € K, and for any p-morphisms 6y : F; — Fo,
B2 : Fo — Fy, there exist F € K and p-morphisms 71 : F — Fi,
Ty : F — JFo such that 8, o 71 =05 019

(2) K has the Super Amalgamation Property for Frames (SAPF for
short), if K has the (APF) and also satisfies that for any z € W;
and for any y € Wy, 01(x) = 62(y) implies that 7(2) = z in Fy
and m3(z) =y in F» for some z € W.

The equivalence of frame condition for CIT is shown by two steps:
the first step is to be proved the equivalence between (AP) and (APF),
the second, (SAP) and (SAPF).
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Theorem 4.8

(1) For a class K of descriptive general frames, if K, has the (AP),
then K has the (APF).

(2) For a class C of modal algebras, if C, has the (APF), then C has
the (AP).

Proof : (1): Suppose for frames Fp, Fi1, F2 € K, there are p-morphisms
p1 : F1 — Fo and pp : Fo — Fp. Then By Lemma 3.7, g1(X) :={a €
Wi |p(a) € X} and go(Y) :={b € Wa|u2(b) € Y} for X, Y € Wy are
embeddings. (g1 : Fo* — F1¥, g2 : Fo* — F2*) By (AP) of K¥, there
are an algebra F* € K* and embeddings f1 : F1* — F*, fo : 2" = F*
such that fi o g1 = fo 0 gs. Here by Lemma 3.6, vi/(F) := {X €
Pi| fu(X) € F} and 15/(G) := {Y € Py | fo(Y) € G} for F,G € F,(P)
are p-morphisms. (11’ : (Fu)" = (F1e)", 02" 1 (Fe)* = (Fau)*) Since F
is descriptive, by using an isomorphism 75 : F, — (F*)« defined in the
proof of Theorem 3.10 as 7¢x(z) = {X € Py |z € X} for k = 1,2, v/
and vy’ should be modified as v1(z) := 11 {({X € P1|fi(X) € n(=)}),
va(y) =n({Y € B | f2(Y) € 2(y)})-

Claim: for any a € W and for any X € P in F, X € 7oy ovyi(a)
implies X € 7 o ug o ve(a), where 7 : F — (F*), defined as 7(z) :=
{X eP|zeX}.

Because, X € Topujov(a) if and only if p; ovi(a) € X if and only if
vi(a) € g1(X) if and only if 77! ({X eP|fi(X) e Tl(a)}) € g1(X).
Here, put b := 71_1({X eP|fi(X)e Tl(a)}). Then, b € g;(X) and
n1(b) = {Z € P1| f1(Z) € m1(a)}. This means that for any Z € Py,
be Zifand only ifa € f1(Z). Since b € g1(X), if g1(X) is taken for Z,
a € fiogi(X) = faoga(X). Put ¥ := go(X). Then a € fo(Yp), which
is equivalent to fo(Yp) € m(a). Again, put ¢ = va(a) = T ({Y €
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Py| fo(Y) € 72(a)}). Then mp(c) = {Y € P|f2(Y) € 72(a)}. Therefore,
Yy € 12(c), and so, ¢ = va(a) € Yo = g2(X). Eventually psove(a) € X,
that implies X € 7 o g o vz(a).

Thus it is the case that 7o puj oy = 7o ug oy, Since 7 is one to one,

it is shown that p1 o vy = g o vs.
(2): Suppose there are algebras g, 21,22 € C and embeddings f; :
Ao — Ay, fo: Uy — AU, By Lemma 3.6, maps g7 : Ay — Ags defined
by g1(F') := {a € Ao | fi(a) € F} for F € Fp(A;) and go : Ao — Ao
defined by g2(G) = {b € Ao | fo(b) € G} for G € F,(Ay) are p-
morphisms. By (APF) of C., there exist 2, € C, and p-morphisms
o1 U — Apy and o9 : A, — Ag, such that g; 0 o7 = go 0 05. Then,
by Lemma 3.7, h/(X) := {F € Fp(A) | ox(F) € X} for F € Py, is
an embeddings from (Ag.)* into (A,)* (kK = 1,2). By using the iso-
morphism 6 : A — (U,)* defined as 6(a) = {F € F,(4)|a € F}
for @ € A in Proposition 3.4, hi' should be modified as: hg(a) =
67 ({F € Fp(A) | ox(F) € Ox(a)}) (R : A — A) for k = 1,2, where
O : A, — (Ag«)* is the isomorphism for Ay.

Then, for any F' € Fp(A) and any a € A, F' € § o hy o fi(a) if and
only if o1(F) € 6(fi(a)) if and only if fi(a) € o1(F) if and only if
a € grooi(F) = ggooy(F) if and only if F' € 6 o hg o fa(a), which
implies that 8o hy o fi = 6o hy o fy. Here, since 8 is one to one, it can
be proved that hy o fi = ho o fo. O

Before the equivalence of (SAP) and (SAPF) is proved, an extremely
important lemma related to CIP is shown to be valid here.
Lemma 4.9  Let 20,2, 2 be modal algebras, where 2 is a sub-
algebra of both 2(; and 205. Suppose for a € A; and b € Ay, there
is no ¢ € Ag such that both ¢ <; ¢ and ¢ <5 b hold. Then there
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exist prime filters F; in 2 and F» in Yy such that a € F1,b ¢ Fy and
Fi N Ay = Fon Ap.

Proof : Put X := {z € Ap|a <1z}, and Y := {y € Ao |y <2 b}.
Then by the assumption, X NY = . Consider a family J; := {J C
Ay | J =l2(J), {b}UY C J, X NJ = 0}, where [o(Z) := {u € Az|u <y
J Zo for some finite subset Zy C Z}.

Now, 12({8}) =la(2({B})), (B} UY Cla({8}), X 4a({b}) = 0. Thus
12({b}) € Ja, which means that J2 # 0. Take a chain C := {Z;}ic,, of
elements in J2, and put Z := |JC.
Claim 1: Z is a maximal element in the chain C.
Because, for any u €l2(Z), there exist z1,...,2, € |JC, such that
u <9 21 U-+-U 2z, holds. Since C is a chain, for some number j € w
21, y2n € Zj. Therefore u €l2(Z;) = Z; C Z. Thus Z =]3(2). It
is obvious that {b} UY C Z. Suppose Z N X # 0. Then there exists
z € X such that x € Z. Then x € Z, for some k € w but this implies
that X N Z; # 0. This is a contradiction. Hence Z € Ja. Clearly Z is
maximal in C.

By Zorn’s lemma, there is a maximal element Jy € Js.
Claim 2: J, is a prime ideal in .

Since 1 € X, 1 € Jp because X NJ; = 0. Suppose z € Jp and
y < z, then obviously y €l2(J2) = Ja. Suppose z,y € Jo =la(J2).
Then, since z Uy <g z Uy, zUy € Jo. Thus Jg is a proper ideal. In
order to be shown that Jy is prime, suppose x Ny € Jo, & Jo, and
y & Jo. Because Js is a maximal element in Jo, there exists an element
p € XN l2(J2 U {z}), which is not empty. Then, since Jp =|2(J2),
there is u € Jy such that a <; p <9 wU z. Similarly, there exists
an element g € XN J2(J2 U {y}), which is not empty. Then there is
v € Jy such that a <1 ¢ <o vUy. Here p,q € Ap and u,v,z,y € As,
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and so, u Uz, v Uy € Ay. Since a <1 pNyg, pNg € X. However,
pNg <y (zUu)N(yUv) = (zNy)U(zNv)U(yNu)U(uNy), where the
last is a join of four elements in Jy. Therefore the join is in Jo, and
so, pNq € Jo. This implies that X N J; # 0. Hence Jy € Ja, which is
a contradiction. Thus Js is a prime ideal.

Put Fy := Ag \ Jo. This is, of course a prime filter in 2. Put
also Fy := F» N Ap and Jy := Jo N Ag. Then X C Fp, Y C Jy, and
FonJy = 0 hold. Next, consider a family §1 := {F C A | F =1
(F), {a} UFy C F, FNJy = 0}, where 11(Z) :={u € A1 | NZo <1
u for some finite subset Zy C Z}.

Suppose 11 (Fo U {a}) N Jo # 0. Then there is z € Jy such that
z €t1(FoU{a}). Since Fy is a filter in g, zNa <1 z for some element
z € Fy. Then a <1 —2Uz, and z,x € Ag, that implies —zUz € X C Fp.
Because z N (—zU z) <; z, z € Fy, which means that Fy N Jy # 0.
This is a contradiction. Therefore, T1(Fo U {a}) € &1, and so, § # 0.
Take a chain C := {Z;};c., of elements in §; and put Z :=JC.
Claim 3: 7 is a maximal element in C.

For any u €11 (Z), there are z1,...,2;;, € Z such that z; N ---N
Zm <1 u. Since C is a chain, there exists a number k € w such that
21," " ,Zm € Zy. Then u €t1(Zy) = Zx C Z, which means that
t1(Z) = Z. It is clear that {a} U Fy C Z. Suppose there is v € ZnN Jy.
Then v € Jy and v € Z; for some i € w, both of which imply that
Z; N Jy # 0. This is a contradiction. Hence Z € F;. Trivially Z is
maximal in C.

By Zorn’s lemma again, there exists a maximal element Fy € F1.
Claim 4: F) is a prime filter in 2.

Since 0 € Jy and F1 N Jyg = 0, 0 € Fy. Suppose z € F; and z <;
y. Then, since z € Fy, y €t1(F1) = Fi. Suppose z,y € Fj, then



A Note on Semantic Tools for Modal Logics (MIYAZAKI)

zNy <3 zNy €l (F1) = Fi. Hence Fy is a proper filter. For
primeness of Fj, suppose z Uy € Fy, z ¢ F] and y ¢ F;. Since
Fy is maximal in §;, there exists an element p €1 (Fy U {z}) N Jo,
that is not empty. Then, since F; =7T1(F}), there exists u € Fy such
that u Nz <; p. Similarly there exists an element ¢ €11 (F1 U {y},
which is not empty, and there is v € Fj such that v Ny <; ¢q. Here,
w,v, ¢,y € A1 and (zNu) U (yNy) <1 pUgq. Expanding the left hand
side, (zUy)N(zUv)N(uUy) N (uUv) <1 pUgq. The left hand side is
a meet of four elements in Fi, which implies that pUq € Fy. However,
p,q € Jy, and so pU q € Jy must hold. These two contradict to that
FyNJg=0. Thus Fy is a prime filter in 2.

Now clearly, a € Fy and b ¢ F5. Finally, if x € Fy N Ap, then
x & Jy, and so, z ¢ Jo, which means that z € F, N Ag. Conversely,
if £ € Fy N Ag, then since Fy N Ay = Fy, x € £ N Ag. Therefore
Fi N Ag = FoN Ap is proved. O

The equivalence of (SAP) for algebras and (SAPF) for frames is now
proved.
Theorem 4.10

(1) For a class K of descriptive frames, if K* has the (SAP), then K
has the (SAPF).

(2) For a class C of modal algebras, if C, has the (SAPF), then C has
the (SAP).

Proof : (1): Suppose for frames Fy, F1, F2 € K, there are p-morphisms
p1:JF1— Fp and po @ Fo — Fo. Then, by Lemma 3.7 g1 : Fo* — F1*
defined as: ¢1(X) := {a € Wi |pi(a) € X} and g2 : Fo* — Fo* defined
as: g2(b) :={Y € Wy | u2(b) € Y} are embeddings. Then, by (AP) of
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K*, there are an algebra F* € K* and embeddings f; : /1* — F* and
fo: Fp® — F* such that fiog; = foogs. As the proof of Theorem 4.8
shows, there exist p-morphisms v; : F — F; and v : F — Fg such
that u; o vy = pg o vg, where v (z) := 11 L ({X € P1| fi(X) € n(z)})
and n(y) == L({Y € P2 | fo(Y) € 2(y)}), for z,y € W.

To be proved the contraposition of (SAPF) of K, suppose for z €
Wi,y € Wo, 1 Hz)Ne ™ Hy) =0in F. Put S := {A(X)Nfo(Y)|X €
PLY e P, X e 1(2),Y € o(y)}

Claim: NS = 0.

Because, suppose otherwise. Then there exists a point a € ({f1(X)N

LY)|X e P,Y € Po,z € X,y € Y}. This means that forany X € P,
and for any Y € P, if z € X and y € Y, then a € f1(X) N fo(Y).
This can be rewritten into:
VX € P and VY € Pg[(x € X implies vi(a) € X) and (y €
Y implies vp(a) €Y)]. e )
However, by the assumption v ~}(x) N1~ (y) = 0, either = # v1(a)
or y # va(a) holds. In the former case, since F; is differentiated, there
exists S € P, such that z € S and vi(a) ¢ S. This means that the
above condition (f§) does not hold. Similarly, in the latter case, since
F> is differentiated, there exists T' € P such that y € T but va(a) ¢ T
This means that the above condition () does not hold. Thus the claim
is proved.

Then by compactness of F, the intersection of some finite mem-
bers in S is also empty. That is, there are X1, Xo,...,X, € P; and
Yl,Yg,... Y, € P, such that 2 € X,y € Y¥; for 1 <4 < n, and

0= ﬂ (AX) N L(Y) = AN NXR) N (YN NY,).

PutX Xiin---NXp,andY: =Y N---NY,. Then, X € A,Y €
Pz e X,y eV, and f1(X)N f2(Y) = 0. The last identity implies
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that f1(X) C —f2(Y) = fo(=Y) in F*. By (SAP) for K, there exists
Z € Py such that X C ¢1(Z) and g2(Z) € =Y, which is Y C —g2(2).
Therefore, z € X C g1(Z) and y € Y C —go(Z) in Fo. Thus, dually,
p1(z) € Z and pa(y) ¢ Z. Since Fy is differentiated, p1(z) # pa(y)-
(2): Suppose there are modal algebras 2dg,%%;,%s € C and embed-
dings f1 : Ao — Us, fo : Ao — As. By Lemma 3.6, maps g; :
A — Uos defined by g1(F) := {a € Ap|a € F} for F € Fp(A1)
and g : s — Uox defined by ¢2(G) := {b € Ag | b € G} for
G € Fp(Az) are p-morphisms. Then by (APF) of C,, there exist
a frame A, and p-morphisms o1 : 2, — Aj, and o2 @ A — Ao,
Therefore by Theorem 4.8 (2), embeddings h; : % — 2 defined
by hi(a) == 071 ({F € Fy(A) | o1(F) € 61(a)}), and hy : Ay — A
defined by ha(b) == 0-L({G € Fp(A) | 02(G) € 62(b)}) satisfy that
hio fi = hgo fa.

Now, suppose hi(a) < hg(b) in 2 for a € A and b € Ay. Fur-
thermore, suppose there is no ¢ € Ag such that both a <; fi(c)
and fa(c) <2 b are satisfied. Then, by Lemma 4.9, there exist a
prime filter F; in 2d; and a prime filter Fy in 2y such that a € Fi,
b¢ Fy and Fi N fi1(Ag) = Fa N f2(Ap). The last identity implies that
g1(F1) = g2(F2) in Yp. Here, by (SAPF) of C,, there exists a prime
filker H in 2 such that o1(H) = Fy and o9(H) = Fy. Therefore,
a € 01(H), and so, H € 6(hi(a)). However, b & o2(H), which means
that H & 0(ho(b)). Thus 6(hi(a)) Z 6(ha(b)), which contradicts to the

assumption. O
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5 An algebraic method to prove the CIP for

modal logics

There are several syntactical methods of proving the CIP for modal
logics. Among them, Maehara method based on cut eliminable sequent
calculus ([19]) and inseparable tableaux method (for example,[4]) us-
ing semantic tableaux are two major ones. In this section, the latter
method is rewritten into an algebraically equivalent style in order to
apply the method to a wider class of modal logics.

Theorem 5.1 Let V be a variety of modal algebras and L := L(V)

the modal logic corresponding to V.

(1) For modal algebras 2g,2;,As € V, suppose that there exist em-
beddings f1 : g — 1 and fo : Ay — As. Then there exist a
modal algebra At and embeddings g; : 2%; — At and go Uy — uf
which satisfy the following:

(a) (g10f1)(z) = (g2 0 f2)(2) for any z € Ao.

(b) For any z € A; and for any y € As, if g1(z) < g2(y) in 2, then
there exists an element z € Ag such that z <; fi(z) in 2; and
f2(2) <oy in Ap.

(2) In (1), if A* € V, then L has the CIP.

Proof : (1): For modal algebras 21y, 21,22 € V, suppose that there
exist embeddings fi : %o — U1 and fy : Ay — As. Here both f1 and fo
may be assumed to be identity maps, that is, fi(z) = fa(z) = = holds
for z € Ag. Define an algebra A := (P(W),N,U, —, I, B, W), where:
W := {(F,J) | F is a prime filter in 25, J is a prime ideal in%As,

(FNAg)N(JNAg) = 0, (FNA))U(JNAg) = Wo}, and (g, s,y R, 0, if
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for any I;(a) € A1, I1i(a) € Fy implies a € Fy and for any I2(b) € Aq,
I;(b) ¢ Jy implies b ¢ Jo. From this relation R, the operation Ig
is defined as in Proposition 3.5. It is easily seen that this ! is
indeed a modal algebra. Furthermore, define maps ¢; : 2 — U
and g : Ao — W as: gi(z) = {(F,J) € W |z € F} for z € Ay,
92(y) ={{F,J) e W |y ¢ J}fory € Ay.

Claim 1: g; is one to one.

Suppose z £1 y in 2A;. Then, there exists a prime filter F; in 20
such that z € F; and y ¢ Fy. Put J; := Ay \ F1, Fp := F1 N Ag and
Jo := J1NAg. Consider a family J := {J C A2 |J =2 (J),Jo C J,JN
Fy = 0}. Tt is obvious that |2 (42 (Jo)) ={2 (Jo) and that Jy Cla (Jp).
Suppose that |o (Jp) N Fy # @. Then, there is a € Fy and there are
bi,...,by € Jy such that a <5 by N---Nb,. Since Fy C Fi, that is a
prime filter, and 2 is a subalgebra of /1, by N---Nb, € F1N Ay = Fp,
and so, b; € Fy for some i. Therefore Jy N Fy # (0, which is a contra-
diction. Hence |2 (Jo) N Fy = (. Thus J # 0.

Take a chain C := {Z;};e, of elements in J, and put Z := (C.
Then for u €l2 (Z), there exist vy,...,vy € Z such that u <g
v1U- - -Uwy,.Because C is a chain, v1, ..., vy € Z; for some j. Therefore
u €ly (Z;) = Z; C Z, which implies that |2 (Z) = Z. It is easily seen
that Jo € Z and ZN Fy = . Thus Z € J. Now, by Zorn’s lemma J
has a maximal element Jp.

This Jo is a prime ideal in 2,. Because, by the facts 1 € Fj
and JoNFy = 0, 1 € Jp follows. Suppose a € Jy and b <y a,
then b €la (Jo2) = Ja. Suppose a,b € Ja, since aUb <5 a U b,
aUb €ls (J2) = Jo. Hence Jy is a proper ideal. To be seen that
it is prime, suppose aNbd € Jy, and a & Jo and b & Jo. Since J; is max-
imal in J, there exists p in |2 (JoU{a}) N Fy # O, and there exists ¢ in
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12 (JoU{b}) N Fy # (. Since p,q € Fy, pNg € Fy. On the other hand,
for these p, g, there is u,v € Jy such that p <s uUa and ¢ <o vUb
hold. Then, pNg <2 (uUa)N(vUb) = (uNv)U(unNdb)U(anv)U(anb).
The rightmost hand side is a join of four elements in J3, which is in
Jy. Therefore p N q €ls (J2) = Ja. This is a contradiction. Hence Jy
is a prime ideal.

It is straight forward that (F1NAg)N(J2NA4g) = 0. Put Fh := As\ Ja.
Then, if a € F1NAg = Fp, then a ¢ J; and a € A, and so a € FoN Ag.
Conversely, if a € F1 N Ag but a € Ag, then a € J1N Ay = Jo C Jo.
Therefore a ¢ FoNAg. Thus F1NAg = FoNAg, and so, (F1NAg)U(J2N
Ap) = (FaNAg)U(JaNAg) = (FaUJo)NAg = AN Ag = Ag. Eventu-
ally, (Fy, J2) € W is proved. Since z € F but y & Fi1, (F1, Ja2) € g1(z)
but (F1, J2) € g1(y), both of which imply that g1(z) € g2(y). This ¢
is one to one.

Claim 2: g; is a homomorphism.

It is not so hard to be proved that ¢1(1) = W, g1(—z) = —aq1(z),
and gi(z N y) = g1(2) N g1(y). The fact that g1(I(2)) = Ia(e:(=))
has to be checked. Suppose (F,J) € gi1(I(z)). Consider an arbitrary
(F',J") € W such that (g sy R(p joy. Then, since I(z) € F, z € F’
which means that (F’,J’') € g1(z) Therefore, (F,J) € Ir(g:1(x)).

Conversely suppose (F,J) & g1(I(z)). Then I(z) ¢ F. Put H :=
{#z € A1 |I(z) € F}. Then it is obvious to check that H is a proper
filter in 2; and x ¢ H. By Lemma 3.3, there exists a prime filter G; in
2 such that H C Gy and z ¢ G1. Put J1 := A1 \ G1, Go := G1 N Ay,
and Jo := J1 N Ag. Let K := {z € Az | I(z) € Az \ J}, and consider
a family & := {G C 42| G =12 (G),K C G,GNJy = 0}. Now,
for a €t9 (K), there are b1,...,b, € K such that by N---Nb, <2 a.
Since I(b1),...,I(bn) € Az \ J, and Ay \ J is a prime filter in Ay,
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Iby)N---NI(by) =1I(b1N---Nby) <2 I(a) € Ay \ J, which implies
that @ € K, and so T2 (K) = K. Suppose K N Jy # §. Then there is
a € K N Jy. From the fact that a € Jy, a € Ag and a € J1 = A1 \ Gy,
which means that a ¢ G1. From the fact that @ € K, I(a) € Az \ J,
that implies that I(a) € F N A, and so, a € H C G4, but this is a
contradiction. Therefore K N Jy = 0. Hence K € & # 0.

Take a chain C := {Z;}ic, of elements in &, and put Z := C.
Then for a €ty (Z), there exist by,...,by € Z such that byN---N
b <2 a.Because C is a chain, b,...,b, € Z; for some j. Therefore
a €ty (Z;) = Z; C Z, which implies that 13 (Z) = Z. It is easily seen
that K € Z and ZNJy = 0. Thus Z € R Now, by Zorn’s lemma &
has a maximal element Fj.

This E5 is a prime filter in 2. Because, by the facts 0 € Jy and
JoNEy =0, 0 ¢ Ey follows. Suppose a € Ey and a <5 b, then
b €ty (E2) = F2. Suppose a,b € Ej, then since aNb <3 aNb,
anb €ty (E2) = Ey. Thus Es is a proper filter. To be proved that it is
prime, suppose aUb € E», a & Eo and b € Eo. Then, since E5 is a maxi-
mal element in £, there exists p in T2 (E2U{a})NJy # 0 and there exists
gin Ty (ExU{b})NJy # 0. Since p,q € Jy, pUg € Jy. on the other hand,
for these p, q, there are u,v € E3 such that uNa <spandvNb<ygq
hold. Then, pUq >2 (uNa)U(vNb) = (uUv)N(uUb)N(aUv)N{aUb).
This rightmost hand side is a meet of four elements in Es, which is in
Ey. Thus pUg €12 (E2) = Eo This is a contradiction. Therefore Es is
a prime filter. Put Ly := Az \ Ea. (EaNAp)N(J1NAg) = EanNJy =10,
which implies that (G1NA)N(LaNAg) = 0. For any a € J1NAg = Jo,
a € Es, and so, a € Ly N Ag. For a & J; N A, since J; is a
prime ideal in 23, and 2 is a subalgebra of 2, —a € J; N Ayp.
Therefore, by the same reasoning, —a € Lo N Ap, which means that
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a & LyNAg. Thus JiNAg = LaNAg. Therefore, (G1NAg)U(LaNAy) =
(G1MAg) U (J1NAy) = (GiUJi)NAy = AN Ayg = Ap. Hence,
(G1,Ls) € W. This pair (G, L) satisfies the following: For any
I(z) € Ay, I(Z) € F implies z € H C G;. For any I(u) € Ay,
I(u) ¢ J implies u € K C Ey, and so u ¢ Ly. These two mean that
(r R L,y However, z ¢ G1, that means that (G1,L2) ¢ g1(z).
Therefore, (F,J) & Ir(91(X)). Thus ¢1(I(z)) = Ir(g1(z)) is estab-
lished. It has just been proved that g; is an embedding. The similar
argument can go through for go to be seen that go also turns out to
be an embedding.

Moreover, both g1, g2 have the properties (a) and (b) as shown below.
(a:) For any z € Ag, (F,J) € g10 fi(z) if and only if fi(z) =z € F
if and only if z &€ J if and only if (F,J) € ga(z) = g2 0 fa(z). Thus
(910 f1)(@) = (g2 0 f2)(2)-

(b:) For z € A; and y € Ay, suppose there is no z € Ag such that
both z <3 fi(z) and f2(z) <2 y hold. Then by Lemma 4.9, there
exist a prime filter F; in 2A; and a prime filter F» in %Ay such that
x € Fyand y € Fy and Fy N Ag = Fo N Ag. Put I := Az \ Fp. Ob-
viously y € Ip. It is easily seen that (F1 N Ag) N (I2 N Ag) = 0, and
that (F1 N Ag) U (I N Ap) = Ap. Therefore the pair (Fi,I) € W,
and (F1, L) € gi(z), but (Fi,I) & g2(y), all of which imply that

91(z) € g2(v)-
(2): If At € V, then (1) says that the variety V has the (SAP). There-
fore, by Theorem 4.4, L(V) has the CIP. O
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6 Outlook

In this note, proofs of the equivalence of frame-theoretic condition
and algebraic condition for a normal modal logic to have the Craig’s
interpolation property or the Halldén completeness are given carefully,
based on the duality of modal algebras and general frames. This is a
basic in concidering questions about CIP or H-comp for modal logics
by way of general frames.

In proving these equivalences, it is realized that descriptiveness of
general frames, in particular, differentiatedness and compactness, plays
an important role in many aspects. The class of frames which deter-
mines a modal logic is not a class of plain frames, but that of frames
with such special properties.

It is also realized that this note has quite a few occurrences of the
technique to show the existence of a prime filter which is expanded
out of a proper filter based on Zorn’s lemma. In particular, this tech-
nique is used in a proof to show (SAP) of algebras from (SAPF) of
frames, and a proof of algebraic method for the CIP in the last section.
This suggests that the proof for a modal logic to have the CIP closely
resembles the proof of completeness theorem in an algebraic point of
view.

The algebraic method presented in the last section possesses enough
generality. The question in the next step is, of course, what sort of
modal logics satisfy the condition ! € V. This method is an alge-
braization of syntactical Inseparable Tableauz Method, and it is like a
Henkin-style proof of the completeness of modal logics. It will give us
a deep understanding of Craig’s interpolation property in modal logics
to clarify similarities and differences between Kripke complete logics
and logics with CIP.
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On Halldén completeness, as is seen in the condition (FCH), a frame

with a point in it may well be taken to be a unit of a semantics.

Therefore, it seems that it is not normal modal logics but quasi nor-

mal modal logics that has to be considered. Then, a question what

the normality of a modal logic means in connection with H-comp must

be asked after the characterization of quasi normal modal logics with

H-comp.
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