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Abstract. In this paper, we give a brief survey of multivariate publickey cryptography
(MPKC) whose security depends on the difficulty of solving a set of multivariate
polynomial equations, focusing attention on the interactions between MPKC and computer
algebra techniques which cause the improvement of their algorithms and various types of
cryptosystems. Especially, we survey interactions between the development of algebraic
surface cryptosystem and various trials to attack using computer algebra techniques such as
reduction, application of Grobner basis, reduced lattice basis, parametrization, substitution of
series solutions or rational points, and ideal decomposition.

1 Introduction

Public-key cryptography is wildely used nowadays, but once a quantum
computer is available, RSA, ElGamal and elliptic curve cryptography
become insecure because there are polynomial time algorithms for integer
factorization and discrete logarithm problems for a quantum computer.
Therefore, multivariate cryptography, lattice-based cryptography and code-
based cryptography whose security depend on the difficulty of solving other
mathematical problems (NP-hard) have received attention as a post-quantum
cryptography. In this paper, we focus attention on multivariate public-key
cryptography (MPKC) whose security depends on the difficulty of solving a

set of multivariate polynomial equations.
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There are many MPKCs such as Matsumoto-Imai cryptosystem (MI),
the Hidden Field Equations cryptosystem (HFE), the Oil-Vineger signature
scheme, the Tamed Transformation Method cryptosystem (TTM),
cryptosystem derived from internal perturbation, moon letter cryptosystem,
Random Simultaneous Equations of degree 2 PKC (RSE(2)PKC), piece
in hand matrix, Algebraic Surface Cryptosystem (ASC), etc. Then, the
computer algebra techniques are essential to the development of the
cryptosystems and several major mothods have been developed to attack on
them such as Grobner basis mothod, its improvements (Fy, F), the differential
attack, etc.

In section 2, we see a brief survey of multivariate public-key cryptosystems.
And in section 3, we see interactions between algebraic surface public-key

cryptosystems and various types of computer algebra techniques.

2 A Brief Survey of Multivariate Public-Key Cryptosystems

2.1 Matsumoto-Imai Cryptosystem

In this subsection, we see a brief survey of Matsumoto-Imai Cryptosystem
(MI) [18] which was proposed by Matsumoto and Imai in 1988, and a related
attack.

Let k be a finite field of characteristic two and cardinality ¢, and take g(z) €
k[z] to be any irreducible polynomial of degree n. Define the field K = k[z]/g(z).
a degree n extension of k.

Let & : K — k™ be the standard klinear isomorphism between K and k™
given by

Dlag+ a1z + - +an_12™ ") = (ag,a1, - ,n_1)-
The subfield k of K is embedded in k™ by &(a) = (a,0,---,0),Va € k.
Note that here @ is a k-linear map if we treat k as a subfield in K.
Choose ¢ so that 0 < 6 < n and ged (¢° +1,¢° — 1) = 1, and define the map

F over K by F =X 144’ The conditions on  insure that F is an invertible
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map; indeed, if ¢ is an integer such that t(1+¢°) = 1 mod (¢" — 1), then F~!
is simply ﬁ_l(X) = X?t.

Now let F be the map over k™ defined by

F(z1,-- @) =0 Fo® ™ oy, ,70) = (f1,0+, fa),

where f1,--- , fa € k[z1, -+, Zs). And define the map over k™ by
F(z1, - ,an)=L1oFoLy(z, - ,z) = (Fi, - fn),
where L; and L, be two invertible transformations over ™ and fi,--- , f, €
k[z1, - ,zp). See Fig.l.

Public-key : The field k£ and degree 2 polynomials fi,--- , fn € k[T1,-** , Zn]

Private-key : Two invertible affine transformations L; and Ls.

(@ can be kept private, but it is not critical.)

Encryption : Given a plaintext message (x’l, e ,m;),
the associated ciphertext is (yy, -+ ,¥),
where y; =ﬁ(m’l,--- ,x;) fori=1,--- ,n.

Decryption : We can decrypt the ciphertext (y;, e ,y;l) by computing
F (o) = L3 o FHo LMy, - 0y)
=Ly oo Flod o LT (yy, - u)
=L;lodoFlod (2], - ,2,)
=L;YZ1, - ,Zn)
= (21, %)
Moreover, a multi-branch MI is composed of (single-branch) MI as described

above. For detail, see [16, 18].
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Fig. 1. Composition of maps in the construction of ML

2.2 Attack on Matsumoto-Imai Cryptosystem
Patarin attacked MI by algebraic attack via linearization equations in 1955
[19]. The linearization equations are constructed as follows. Let X,Y € K st.
Y = F(X) = X9+ then we have Y9 -1 = (xa'+1)¢’~1 = x’~1 If we
multiply both sides by XY and move right-hand side to left, we have
XY9' —X7°Y = 0. Define B(X,Y)=XY? - XY € K[X,Y]and R = do
Ro (! x @~1). The n components of R(x1,- - ,%n, Y1, - ,Un) are of the form
D1 Dgm Ga il + Y ey BT + i1 ¢¥; + d, then we obtain 7 linearization
equations as

n n n n

Zzaijxifj + Zbiﬂci +Zijj +d=0.

i=1 j=1 i=1 j=1
Actually, to solve linear equations, one of the ways is to substitute plaintext-
ciphertext pairs which can be generated using public-key. And the

linearization attack can also be applied to the multiple-branch ML

2.3 Others

Even though the MI system was broken, various types of cryptosystems
have been proposed to avoid the system's weakness, such as the Hidden
Field Equations cryptosystem (HFE), the Oil-Vineger signature scheme, the
Tamed Transformation Method cryptosystem (TTM), cryptosystem derived
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from internal perturbation, moon letter cryptosystem, Random Simultaneous
Equations of degree 2 PKC (RSE(2)PKC), piece in hand matrix, Algebraic
Surface Cryptosystem (ASC), etc. Then, the computer algebra techniques
are essential to the development of the cryptosystems.

In the next section, we see the interaction of development of algebraic
surface public-key cryptosystem and attacks with computer algebra

techniques.

3 Computer Algebra Technigues in the Development of Algebraic
Surface Public-Key Cryptosystems

3.1 Algebraic Surface Public-Key Cryptosystems (ASC06)
Akiyama and Goto suggested algebraic surface public-key cryptosystems
(ASCO086, [1, 2, 3]) whose public-key is the defining equations of an algebraic

surface, and secret-key is the algebraic curves on it.

ALGEBRAIC SURFACE PuBLIC-KEY CRYPTOSYSTEM |
{m&“ p(ASCO6 BY Akivama & GoTo(PAC2006))

% iﬂs e) aX
WX (x V. )

Sender
Bob Public- kev

c‘:lpher toxt|

Flxyf) |
m{fl @ :
DI

R _,f— IPs my s LA
| Secret key I;:L £ ~

~

Eavesdropper S~ D 2 TN S

Eve Section finding problem is cansiderwl to he hard to aniva aven for Quanlim Computer.

public key &
cipher text ...

Fig. 2. algebraic surface cryptosystem
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[Key generation of ASC06]
Secret key: Choose two distinct curves of the form D : (z,y,t) = (ug(t), uy (£), 1),
Dyt (z,y,t) = (vs(t), vy(t),t) satisfying degus(t) # degus(t) or degu,(t) #
deguy(t) for the uniqueness of decryption, and satisfying (ux(t) — vz (£))|(uy (£) —
vy(t)) for c10(t) € IF,[t] (not IF,(t)) in step (a) in Pulic-key generation.
Public key:
(a) Construct algebraic surface (public key) X (z,y,t) = s cii)aty’ =0
over IF, containing two curves (secret key), ie. it satisfies X (ug(t), uy (t),t) =
X(vz(t),vy(t),t) = 0. First, ramdomly choose ¢;;(t) with (,7) # (0,0),(1,0)
and then calculate ¢19(t) and cqo(t) € IFy(¢) as follows.
10(t) 1= = T (s 400,00,0.0) 3 () () (29 = a8) 0y (29}  6) — ()
coo(t) = = (1, )(0,0) Cini (E)tia (£) g (£)7.
(b) Choose £ € IN as a lower bound for the degree of a monic irreducible
polynomial f(t) € IF,[¢] chosen in the encryption step. For reasons of security
(see 5.3 in [3]), we impose deg, X (z,y,t) < £.
(c) Choose d € IN satisfying d > max{degu,(t), degu, (t), degus (t), degv, () }.
By taking a large £ or d, the characteristic p of the ground field can be chosen
as small as possible (e.g. at most 4 bits). The estimation of the key size is
discussed in section 7 in [3].
[Encryption of ASC06]
Let m be a plain text, and divide m into small blocks as m = mg||m1]| - - [|me—1
where each m; is chosen 0 < m; <p—1.
1. Embed m into a plain text polynomial as m(t) = me_1t1 4+ - - - +mqt +myg
2. Choose a random polynomial s(z,y,t) containing a term z%y? with
o > deg,X(xz,y,t) and B > deg,X(z,y,t) and satisfying (deg,s(z,y,t)
+deg,s(x,y,t))d + deg,s(z,v,t) < £. (This implies deg(s(us(t), uy(t),t)—
s(vz(t), vy(t), 1)) < £, therefore we can extract f(t) in the decryption step.)
3. Choose a random polynomial r(z,y,t) satisfying deg,r(z,y,t) < ¢, and a

random monic irreducible polynomial f(t) with degf(t) = ¢
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4. Compute the cipher polynomial
F(z,y,t) =m(t) + f(t)s(z,y,t) + X(z,y,t)r(z,y,1).
[Decryption of ASC06]
As Dy, Dy are on X, X (ug(t), uy(t),t) = X(vz(t),vy(t),t) = 0.
1. Substitute sections D; and D; into F(z,y,t):
ha(t) = Fug(t), uy (), t) = m(t) + £(£)s(us(t), uy(2), 1)
ha(t) = Flua(t),vy(8),8) = m(t) + F()s(va(8), vy (8),1)
2. Compute hy(t) — ha(t)(= f(t){s(us(t), uy(t), 1) — s(va(t), vy (t), 1)}
3. Factorize and find f(t) as a monic irreducible polynomial with maximum
degree.
4. Compute m(t) by reducing ki(t) by f(t). (degm(t) < degf(2).)

5. Extract m from m(t).

3.2 Attacks on ASC06
To attack ASCO06, the following algorithms are suggested.
Assumption 1. For the defining equation of the algebraic surface X which will
be used as the public key, the leading term is in the form as LT(X)ez®y? where
c € IFp and (o, B) # (0,0) w.r.t. a monomial order R.
Algorithm 1 (Uchiyama-Tokunaga’s attack).
Input:  Akiyama-Goto's public key X (z,y,t) € IFy[z, v, ]
satisfying Assumption 1, cipher polynomial F(x,y,t) € Fy[z,y,t].
Output: Plaintext m which corresponds to the cipher polynomial F(z,y,1%).
1. Calculate normal form R;(z,y,t) of the reduction of F(z,y,t) by X (z,y,t).
2. Among the temrs of R;. randomly choose the term satisfying 'y’ ((i,7) #
(0,0)), and its coefficient not being in IF,, then let its coefficient be C.
3. Calculate factors in IF,[t] of C, and let the set consisting of irreducible
fators whose degree is greater than or equal to £ be G. Choose the

element g € G and the normal form n of Ry becomes an element in F,[t].

(9(t) is f(2))
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4. Compute a polynomial n(t) = ng_1t* ! + .- + nit + ng € F,[f], outputs
m = ngl|ni|| - - - ||nk—1 and end. (n(t) is m(t))

If cap(t) of LT(X) = cap(t)zy” is not constant then the normal form of
F(z,y,t) by X (z,y,t) does not necessarily stop in the form as F'(z,y,t) = m(t)+
F&)Ro(z,y,8) + X (2,,8) (f (D) G2 (2,9, 1) + a(z,y,)) —> m(t) + (D) Ra(z,, 1),
ie. some terms might be reduced and disappear, so we might fail to detect f(¢).
It was suggested in January 2007, see [5] for detail.

Next, the author suggested Algorithm 2 in July 2007 (see [9, 101), and
Algorithm 3 in October 2007 (see [11,10]), which are applicable to all cases as

F(x,

m#)+FHsx,v. B+ X0, v, 8 rx,y.1)
=m) +£H) (6,06, v.HX(x, v. 1) +R, (%, v.4) )+ X(x, y. H)r(x, v.4)
_[mmuf(i] R (v 1) X V) G, (x v. D +rix v h) |
T@ detection off(t) ~~~~~ Eﬁ::&:(non :

® reduction

follows.

Smcé it satisfies deg,m(t) < deg {(1),
we can detect £(4) from c_ , (1) of each term ¢, (H) x°v® ((a.B)+(0.0))

Fig. 3. Cryptanalysis: How to detect a plain-text.

Algorithm 2. (lwami's attack: straightforward generalization in IF,,(¢) [z, y])
Input: Akiyama-Goto's public key X (z,y,t) € Fy[z,y, ],
cipher polynomial F(z,y,t) € IFp[z,y,t].
Output: Plaintext m which corresponds to the cipher polynomial F'(z,y,t).
0. Transform public key X to be monic as X:=X/LC(X).
1. Calculate the normal form R;(z,y,t) € Fp(t)[z, y] by reduction of F by b
2. Randomly choose the term satisfying ci; (£)z%y? ((3,7) # (0,0)) and ¢i;(t)
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not being in IF,,, changing ¢;;(¢)(€ Fp(t)[z, y]) to equivalent fractions with
a common denominator, and let the numerator be C(& IFplt]).

3. Factorize C in IF,[t], and let the set consisting of irreducible factors
whose degree is greater than or equal to ¢ be G. Choose g € & and
calculate the normal form n by reduction of R; by g becomes an
element in IF,[t].

4. Compute a polynomial n(t) = ng_1t*~1 + --- + nyt + ng € TFy[t], outputs
m = ng||n1|| - - ||ng—1 and end.

During the reduction step, to obtain m(t) in Fplz,y,t] (not in Fp(t)[z,y),
we must not combine appearing rational functions and the lower polynomial
terms.

In the following algorithm, We utilize Grobner basis techniques introducing

a new parameter. It enables us not to work via rational function field but to
keep staying in the polynomial ring.
Algorithm 3. (Iwami’s attack: Grébner basis techniques in IF, [z, v, t, A])
Input: Akiyama-Goto's public key X (z,y,t) € Fy[z, v, ¢,

cipher polynomial F(z,y,t) € IFp[z,y,1].
Qutput: Plaintext m which corresponds to the cipher polynomial F(z,y,t).

0. Calculate Grébner basis GBx for an ideal Ix = (4 X(x,y,t), A - LC(X)
—1) C Fylz,y,t, A], introducing a new parameter A, using the order
z >y -A>-tinlF,z,y,t, A

1. Calculate the normal form R(z,y,t,A) € Fylz,y,t, Al of the reduction of
F(z,y,t) by GBx.

2. Randomly choose the term satisfying c;; (¢, A)zty? ((5,5) # (0,0)) where
¢5(¢, A) not being in IF,, then let cy;(t, A) be C.

3. To perform desired factorization for detecting f(¢), we factor out powers of
A. Therefore we transform each term of C by using the relation
ALC(X) =1las A% = (A-LC(X))? = A% LC(X)% A' = A(A-LC(X)Y =
A?%.LC(X), -, so as to make the powers of A of each term equal. Then
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perform factorization in IF,[t, A], and let the set consisting of irreducible
factors whose degree is greater than or equal to £ be G. Choose the
element g(t) € G. Calculate Grobner basis GBy, for an ideal I, := {(g(t),
A-LC(X) — 1) C IFp[t, A], and calculate the normal form n € F,t,
reducing R(0,0, ¢, 4) by GB,.
4. Compute a polynomial n(t) = ng_1t*71 + -+ + it + ng € IF,[t], outputs
m = ngl|ny|| - - ||nk—1 and end.
Therefore, Algorithm 2, 3 are applicable to all cases, ie. it shows that the
ASCO06 is broken. Moreover, Inanov and Voloch suggested another attack by

utilizing trace map of algebraic extensions of function fields.

3.3 Improved Algebraic Surface Public-Key Cryptosystem (ASCQ9)
Akiyama, Goto and Miyake suggested ASC09 [4] as an improved version as
follows. Note that the differences between ASC06 and ASC09 are :

Akiyama-Goto i Algebralc Surface Public-Key Cryph:svsfeinl
(ASCO9 By AxivAMA.GoTOMIvAKE(PKCZ009))

= = !
D1 ¥°s my secret ! D\

f Secret Key },__?)/ v
‘\__,ngn—(u . u, . 7

Section finding problem in considercd to be hard to solve even for Quantum Computer

from 3 G |

public Key &
clpher text ...

Eavesdropper
Eve

Fig. 4. improved algebraic surface cryptosystem
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(1) Plain text and random polynomial are modified to be multivariate from m(t)
and f(t) to m(z,y,t) and f(z,y,t).

(2) To avoid reduction attack, the order is modified to be X (z,y,t) < m(z,y,t)
= f(z,y,t) ie. it becomes difficult to find m(z,y,t) and f(z,y,t) because
they are reduced by X (z,y,t) and lost their original form.

(3) To decrypt ciphertexts, two cipher polynomials Fy(z,y,t), Fo(z,y,t) are
given.

[Key generation of ASC09]

1. Secret key
D : (z,y,t) = (ug(t),uy(t),t) : a section of X
2. Public key
(a) X(z,y,t) =0: a defining equation of a surface X with fibration.
(b) m(z,4,t) = X jyean m;;(t)zty? : form of a plaintext polynomial,
mi;(t) is unknown except for its degree.
© flz,y,1) = E(i,j)e/lf fi()z*y? : form of a divisor polynomial. fij(t)is
unknown except for its degree.
Here A4 denotes the set of exponents of nonzero z*y? terms in A(z,y, ).
m(z,y,t) and f(z,y,t) are chosen so as to satisfying A, C AyAx where
Aadp = {(ia + 1, ja + jb)|(la; Ja) € A, (16, J5) € A}
The decryption process requires that these keys satisfy the following
condition:
deg, X (z,y,t) < deg,m(z,y,t) < deg, f(z,y,1).
deg, X (z,y,t) < deg,m(x,y,t) < deg, f(z,y,?),
deg, X (z,y,t) < deg,;m(z,y,t) < deg, f(z,y,1),
and
(degm(z, y, t), deg,m(x,y, 1), deg,m(z, ¥, 1)) € I'm,
(deg, f(z,y,t), deg, f(z,y,t), deg, f(z,y,t)) € Iy,
where I, = {(4,4,k) € N%|c;5; # 0} denotes the set of exponents of nonzero

ziyitk terms in m(z, y, ). so that m(z,y,t) = T kyer, cijes v tr.
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[Encryption of ASC09]

Let m be a plain text, and divide m into small blocks as m = mgq]| - - - [|mi;
[|---|lmry where VY(i,5) € An. M| < (Ip| — 1)(degmi;(t) + 1). Further,
write £;; := degmy;(t) and divide m;; into £;; + 1 blocks each of which is of
(Ipl = 1) bits: ms; = mazol|miza]l - - - [|mije,;.

1. Embed m into a plain text polynomial as m(z,y,t) = D5 e Am Mg (t)xiy?
where m;;(t) is given as my;(t) = Ezfy”(” mykth

2. Choose a random divisor polynomial f(z,,t) in accordance with the
condition of f(z,y,1).

3. Choose a random polynomials 71 (z, y,t) and rs(z, y, t) that have the same
form as f(z,y,t); ie. they have A. = Af and degr;;(t) = degfi;(t) for
(1,7) € Ay as polynomials in = and y over k[t].

4. Choose a random polynomials so(z,y,t) and s;(z,y,t) that have the
same form as X (z,y,t); Le. they have 4, = Ax and degs;;(t) = degcy;(t)
for (¢,) € Ax as polynomials in z and y over k[t].

5. Construct the cipher polynomials by
Fi(z,y,t) =m(z,y,t) + f(z,9,t)s1(x, 5, 1) + X (2, y, t)r1(z, 9, 1),

Fy(z,y,t) = m(z,y,t) + f(z,y,t)s2(z, y, t) + X(z, y, t)r2(z, y, t).
[Decryption of ASC09]
The section D : (ug(t), uy(t),t) satisfies X (ug(t), uy(t),t) = 0 as they are on
X(z,y,1).

L Substitute D into F; ; hi(t) = Fi(ug(t),uy(t),t) = m(uz(t),uy(t),t) +
£ (8) 1y (£), )55 (a(2), ey 8), )

2. Compute hy (t)—ha(t) = F(us (), uy (6), )51 (tta (£), 1y (£), £)—55 (e (8), uy (1),
t)}.

3. Factorize hy(t) — ha(t).

4. Find the factor f(ug(t),uy(t),t) as a polynomial of the degree calculated
from the form of f(z,y,t) initially.

5. ha(t) = m(uqg(t), uy(t), 1) (mod f(ug(t), uy(t),t))
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6. Extract the coefficient m;;(¢) from m(z,y,t) by solving linear equations.
Let m(z,y,t) = Y xen, Miiks'y’th, where mij’s are variables.
Construct the linear equations by comparing the coefficients of ¢ in
Mg (), 1y (£),t) = (5 kyer, MighUs(t) uy(8)’t*. The left-hand side is
given in the step 5.

7. Extract m from m;;(t) and authenticate the MAC of m. We can make
certain of the plaintext m, if MAC is authenticated, Otherwise, return

step 4.

3.4 Attacks on ASC09

Reduction Attack : Ivanov and Voloch suggested the guideline of substitution
attack briefly on ASCO09 in section 3 in [7], but the practical algorithm was
not given. Then, the author tried another way, ie. reduction attack on ASCQ9,
but it needs the following assumption. See [12] in detail. Let A% denotes the

normal form of A by reduction of B.
X (z,y,t)

X (z,y,t)

si(z,y,t) < X(z,y,t) holds

Assumption 2. The condition f(z,y,t)
true in the encryption step in ASC09.
Note that if Assumption 2 is satisfied, then

X P ) R [C70 s TN

holds true, and as a result, the attacker can obtain the plaintext by the

X (z,y,t) X(z,y,t)

following algorithm.
Algorithm 4 (Reduction attack on ASC09).
Input: public-key X(z,y,t), cipher polynomials Fi(z,y,t) and Fa(z,y,t),
satisfying Assumption 2.
Output: plaintext polynomial m(z, y,t).
1. Calculate F(z,y,t) := Fi(z,y,t) — Fa(z,y,t)
2. Calculate the normal form F(z, y,_)X(z’y't)

3.Find a factor f(z,y,t) (Y using their conditions by performing
—X(=, y't)

multivariate factorization of F(:c y,t)
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4. Calculate the normal form

X (z,1,1) ————=X (=0
a\’(:l:.y.-‘.]!(-c’l it) X{x.ylnﬂx'y-t) i

m(z,y,t) = Fi(z,y,1)

5.m(z,y,t) = Y ; myer, Mijke y’t* where {my;;} are unknown. Calculate

K(z,y,t)

flzant)

——X{z,1,t)
2o (5.5, k)e Dy, MighT Ytk

6. By comparing the coefficients of step4. and step5., we obtain system of
equations w.r.t. mijp.

7. By solving linear equation w.r.t. myk, we obtain {m;;;} and hence the
plaintext polynomial m(z,y,t). If the adequate plaintext polynomial
cannot be obtained, go to step3 and let another factor be a factor
WX (r,y‘t)_

Therefore, for security, f(z,y,t), s1(z,y,t) and sa(x, y, ) have to be chosen so

as not to satisfy F(z, 5,8 """ XE@D L ¥ (2,4, 1) in ASC09.

si(x,y,1)

Floyat) = fxy:t) s (xr:t) = s, (0.t 0+ X (x,p,8) (7 Ceyat) - n (1))

T
S5 el | IRGEFES g:uk + eyt | B G p8) - Gyt
Substtute =
zero point  |knowm unknown known
of X{x,yt). = . >
Sk
7 = A A 7y [y o) — 12 (x, 751)
T eFatEu- 1. ber of rational noints onXixy.0 = 0
y P > ¥=1,---,n (number of rational points onX(x5,1) = 0)
: H i x
= H : + H (r 0,y at) — e, v,t))
& T, : T,

oy,
= _:: 0
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Fig. 5. Ivanov and Voloch's rational point attack
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Rational Point Attack : Ivanov and Voloch's rational point attack [7] on
ASCO09 is as follows.
Algorithm 5 (lvanov and Voloch’s rational point attack) .
1. F(z,y,t) = Fi(z,y,t) — Fa(z,y,t) Le
F(z,y,t) = f(z,y,t)(s1(z, 9, t)—s2(z, 9, 1))+ X (2,9, t) (r1(z, y, t) —72(2, Y, £)).
2. Let g(z,y,t) = f(z,y,t)(s1(z,y,t) — s2(z,y,t)) and write
9(z,y,t) = T4 jer, gisrz'y’t* where Iy = {(i,5,k) € N|g;;x # 0} denotes
the set of exponents of nonzero z'y/t* terms in g(x, y, t).
3. Find a large number of rational points (z, ye,t¢) on X(z,y,t) = 0 and
substitute them into F(z,y,t) to obtain a system of linear equations in
Gijk € Fp: g(ze, ye, te) = F(@e,ye,te) € =1,--- ,n).
4. Solve this system for g;; and factor g(z,y,t) to find f(z,y,?).
5. Finally, substitute rational points of X (z,y,t) = 0 into
Fi(z,y,t) = m(z,y,t) + f(z,y,t)s1(2, 9, t) + X (2,9, t)r1(z, y, 1)
to construct a system of linear equations in the coefficients of m(z,y,t)
and s1(z,y,t). A solution to this system gives m(z, y,t).

Note that this attack requires many rational points on X(z,y,t) =0,
which can be obtained by raising the field of definition for X (z,y,t) = 0. But
no matter how many rational points we use, the polynomial g(z,y,t) (and
so f(z,y,t) and m(z,y,t)) cannot be determined uniquely in the realistic
calculation.

Substitution of Series Solution : The author attacked by substitution of series
solution [13] on ASC09 is as follows.
Algorithm 6 (substitution of series solution attack by Iwami).
1. F(z,y,t) = Fi(z,y,t) — Fa(z,y,t) Le
F(z,y,t) = f(z,y,t)(s1(2, y, t) —s2(z, 4, )+ X (z, 9, 1) (r1(z, ¥, £) —72(z, ¥, 8)).
2. Let g(z,y,t) = f(z,y,t)(s1(z, y, t) — s2(z, y,t)) and write
9(z,y,t) = T jyer, 9ise'y t*
where {gijx} are unknown elements in F,, and I';, = {(4, 5, k) € N3|g;, # 0}
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denotes the set of exponents of nonzero ziy7t* terms in g(z, y, ).

3. Calculate a series solution of X (z, y,t) = 0 and let it be z = n(y, t). Substitute
it into F(z,y,t) and let it be F(n(y,t),y,t) := 3 Japy*t® where {gag} are
known elements in F,, whereas,

Fn(y, t),u,t) = f(n(y,1),9,t)(s1(n(y, 1), 9,t) — s2(n(y,1),4,1))

+X(n(y, 1), 3, ) (1 (n(y, £), 9, 8) — r2(n(y, 1), ;1))

Fy, 1), y,1)(s1(n(y, 1), 9, 1) — s2(n(y, 1), y,1))mod S

9(n(y,t),y,t)modS®

= 3 gikn(y, t)'y’t* modS*
1= D0, 6.5,y Mgk i)y 1P
where §¢is a polynomial ideal as X (n(y,t), v, t) becomes O by truncation,

{nagijr} are known elements in F,. Now we obtain the system of
linear equations by comparing the coefficients w.r.t. y*¢% as Gap =
Z(i,j_k) NoBijkJijk.
4. Solve this system for g;;x and factor g(z,y,t) to find f(z,y,t).
5. Finally, substitute series solution of X(z,y,t) = 0 into
Fi(z,y,t) = m(z,y,t) + f(z,y, t)s1(z, 9, 1) + X (2,9, t)r1(z, 4, 1)
to construct a system of linear equations in the coefficients of m(z,y,t)
and s;(z,y,t) wrt yotf A solution to this system gives m(z,y,t). (As for
this step, we may use step 5 in Voloch's rational point attack.)
But {gi;x} cannot be determined uniquely because of the freedom of degree
as is shown in Fig. 6. Note that we can also obtain more equations by raising
the field of definition for X (z,y,t) = 0. But it is no different than one obtained
in Voloch's rational point attack in the sense that the polynomial g(z,y,t) (
and so f(z,y,t) and m(z,y,t)) have too many candidates and cannot be

determined uniquely in the realistic calculation. For detail, see [13].
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gystem of linear equaticns
constant —r . .
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# { g,'jk } T+ 1 bjnii:luse of degrees nﬂ‘uulnm.'l !

Fig. 6. Iwami's substitution of series solution attack

Parametrization : The author tried to attack by parametrization in [14].
A parameter ¢ introduced in a half-finished state makes it difficult to apply
known parametrization algorithms directly. See the following example.

Toy example in [4]:

Let X (z,y,t) = 0 be a defining equation of a public-key as

X(z,y,t) = (t+10)z3y? + (16t2 + 7t + 4)zy? + 3t6 + 8£15 £ 13414 4 8¢18 + 3412 +
1261 + 4810 + 8¢7 + 76 + 467 + 1318 + 2t° + 5t + 465 + 1442 4+ 9t + 14

and

D (ug(t), uy(8), t) = (1483 + 1262 + 5t + 1, 11¢% + 3t2 4- 5t + 4,t)

be a section of X (z,y,t). Now, our target is a rational parametrization as

xu(t) xoi(t)
x12(t) " x22(t)

If we apply algorithm “SYMBOLIC-PARAMETRIZATION-BY-DEGREE-d-
ADJOINTS" in [20] (pp.142-143), input/output data is as follows.

Input: X (z,y,t) where t is a homogenenizing parameter,

(

>t)'
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xai(t) xaa(t)
x12(t)" xa2(t)

Unfortunately, ¢ is just a homogenenizing parameter of X (z,y,t). This is not

<

Output: ( ,1).

what we want.

In other ways, if we apply algorithm “PARAMETRIZE" in [21], input/
output data is as follows.
Input: X (z,y,1),

X11 ((1, b} X21 (Ct, b) X31 (ar b)
Xi?(a'a b) ’ Xzz(ﬁa "-’) ’ x:ﬂ(ar b) )

Output: (

The form of output is not what we want. Therefore, the attack by
parametrization was failed.

Improvement of Voloch' s rational point attack by using monomial reduction :
After performing Voloch's rational point attack (or Iwami's substitution of
series solutions attack), we try to obtain more equations and decrease the
candidates of the solution as follows.

Let g be a coefficient vector of g(z,y,t) obtained by Voloch's rational point
attack (step 4. in Algorithm 5) or Iwami's substitution of series solutions
attack (step 4. in Algorithm 6)). Then we can express ¢ as

g=0:+ Z 615:
where ¢; is an unknown element in Fy, g, is a particular solution and {l_):} are
fundamental solutions of g . Let }?1 - 17“; be a coefficient vector of F; — Fy(=
9(z,y,t) + X(z,y,t)(r1(z,y,t) — ra(z, y,t))) then we can express 1?‘1 - 1?‘2 -9
by performing monomial reduction as
F - F,— 3§ = ZdpX
where d; is unknown in F,, p; is monomial and pi_,;( is a coefficient vector of
p; X. Therefore the problem results in combinatorial optimization problem
calculating c; and d; satisfying
1?1 - 13; =g+ Ecz-b_: + Edipﬁi
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Algorithm 7 (Calculation of ¢, d; and g satisfying ¢ = g. + Sc;by and F, — F
=g+ Edip_i})-

1. Let ? be a coefficient vector of g(z,y,t) obtained by step 4. in Algorithm
5 or step 4. in Algorithm 6, and express g as g =g, + 5 eibs Where c; is
an unknown element in Fy, g, is a particular solution and {g:} are
fundamental solutions of 3 And calculate }?1 - F‘g - 57;

2. Let py,--- , pr be monomials which are the support of r1(z, y,t) — r2(z, y,t)
calculated by the conditions of the public key. Then calculate coefficient
vector of p; X and let it be p:}( (t=1,---,7).

3. Construct the following matrix and calculate the reduced lattice basis
where a is a scaling factor.

4. By the short vector, we obtain ¢;, d; satisfying

FH —F'z =g +Z'Cib_;+ Zdip:;(v

and then we obtain

1+v+r | al Y
apX
: - F
-#{g,
_ 0 apE#{gykJ | 8
l+v+r #{g,-,-k}

Fig. 7. The matrix for calculating reduced lattice basis.
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(proof) The problem is to obtain ¢; and d; satisfying }_7‘; - F‘z — g = Ecig;- +
Z‘dip?;(, so it is obvious from the theory of combinatorial optimization
problem using lattice basis reduction.
As is shown above, the strategy is to decrease the number of candidates of
g(z,y,t) by increasing the system of equations by monomial reduction which
is reduced to a problem of combinatorial optimization problem using lattice
basis reduction.

If the conditional equations w.r.t. degrees between r1,r2 and f(z,y,t), s1, 82
and X(z,y,t) in the public key and encryption step of ASC09 were not exist,
then it allowed us to success in improvement. However, it has the degree

condition, so we cannot improve them. The details are follows.

— — N — — .
Theorem 1. As for F1 — F> = g + I, ¢;b; + X]_1dip; X in Algorithm 7, the

equation v = r holds true.

Theorem 2. The rank of the matriz for calculating reduced lattice basis in Fig. 7

s 1+, therefore, the dimension of the solution space of g(z,y,t) still remains v.

From Theorem 2, the number of candidates of g(z,v,t) doesn't decrease and
still remains pY, i.e. the trial of the improvement of Algorithm 5 and Algorithm
6 was failed. In other words, these restrictions of the degree conditions
keep the supports of f(s;—s3) and X(r; —73) in the same form, and prevent
Algorithm 7 from increasing the number of the system of equations and
decreasing the number of candidates of a certain polynomial, therefore the
result of the suggested method is the same as Voloch's method, ie. the
improvement was failed. For detail, see [15].

Ideal Decomposition : Faugére and Spaenlehauer suggested algorithms which
can break ASC09 using ideal decomposition in polynomial time. The idea of a
breakthrough is as follows.
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As the cipher-text polynomials are constructed as
Fi(z,y,t) = m(z,y,t) + f(z,y,)s:(2, 9, 1) + X(z,9,t)rs(z,9,1) (1= 1,2),
then ideal decomposition is performed as follows if and only if (f,X) and

(s1 — 82, X)) are prime ideals.
def

ideal I = (Fy — F3, X)
= (f(s1— s2) + X{(r1 —12), X)
= (f(s1 —s2) + X)
= (f,X) N (s1— 52, X)

Note that if (f, X) and (s; — s2, X) are not prime ideals in IF,[z,y,t] then we
cannot perform such decomposition of ideals, that is to say, this strategy
is not available. They say in Lemma 1. in [8] that “generically” they are
prime ideals in ¥,[z,y,t]. However, we can say that there is still room for
consideration.

Then we can manupulate implicitly the polynomial f through (f, X) as

(F1, F2, X) + (f, X) = (F1, F2, X, f)
=(m, f,X)

By using this, we can recover the plain-text polynomial m(z,y,t) by solving
linear system.

By introducing a parameter z, the number of candidates of the solutions
can be reduced in the field of fractions IF,(t) as

(Fitz,Fo+2,X)+{f,X)=(F1+2z,Fh+2X,f)=(m+zfX)

Algorithm 8 (Attack using ideal decomposition).

1. Compute the resultant Res,(F1 — F2) € IF,(t)[y].

2. Factor the resultant Res; (F1 — F3) = [ Q:(y)- Let Qo(y) € IFy(t)[y] denotes

an irreducible factor of highest degree in y.
3. Compute a grevlex-Grébner basis of the ideal J = (Fy + 2, Fo + 2, X, Qo) C
IFp (1) [z, y, 2].
4. Consider the following linear system over IF,(t):
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NF;(z)+ Y mi(()NFs(a'y’) =0,
(4,7)€EAm
where NF; denotes the normal form with respsct to the ideal J. If the

system was no solution, then go back to Step 2 and choose another factor
of the resultant.

5. Returnm = 37, o1 mi;(t)z*y’ where (ms;(t)) is the unique solution of

the linear system.
They suggested 3 variants of attacks called Level 1 to 3. Algorithm 8 can be
seen as 'Level 2 Attack: computing in the field of fractions IK = IF,(t)". For
detail, see [8].

Althogh there is still room for consideration that (f, X) and (s; — s3, X)
are not always prime ideals in IF,[z,y,#, ASC09 was broken in polynomial
time. But they avoided to solve the section finding problem by using ideal
decomposition, so the section finding problem itself is still available and an

interesting problem.

4 Conclusion

We give a brief survey of MPKC focusing attention on the interactions
between MPKC and various types of computer algebra techniques, especially
for algebraic surface cryptosystem. We see various trials to attack using
computer algebra techniques such as reduction, application of Grébner basis,
reduced lattice basis, parametrization, substitution of series solutions or
rational points, and ideal decomposition. As described in this paper, computer
algebra techniques developed cryptosystems, and vice versa. “Multivariate”

allows us various ways of approach, therefore, it’s attractive.
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